Skip to main content
Log in

Optimization of Acoustic Liposomes for Improved In Vitro and In Vivo Stability

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Liposomes encapsulating perfluoropropane gas, termed acoustic liposomes (ALs), which can serve both for ultrasound (US) imaging and US-mediated gene delivery, have been reported. However, the echogenicity of ALs decreases within minutes in vivo due to gas diffusion and leakage, hindering time-consuming procedures such as contrast-enhanced 3D US imaging and raising the need for improvement of their stability.

Methods

The stability of ALs preparations incorporating increasing ratios of anionic / unsaturated phospholipids, polyethylene glycol (PEG)ylated phospholipid and cholesterol was investigated by measurement of their reflectivity over time using a high-frequency US imaging system, both in vitro and in vivo.

Results

The retention of echogenicity of ALs in vitro is enhanced with increasing molar ratios of PEGylated lipids. Addition of 10 molar percent of an anionic phospholipid resulted in a 31% longer half-life, while cholesterol had the opposite effect. Assessment of the stability of an optimized composition showed a more than 2-fold increase of the detection half-life in mice.

Conclusions

Presence of a PEG coating not only serves to provide “stealth” properties in vivo, but also contributes to the retention of the encapsulated gas. The optimized ALs reported here can be used as a contrast agent for lengthier imaging procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kodama T, Tomita N, Yagishita Y, Horie S, Funamoto K, Hayase T, et al. Volumetric and angiogenic evaluation of antitumor effects with acoustic liposome and high-frequency ultrasound. Cancer Res. 2011.

  2. Kodama T, Aoi A, Watanabe Y, Horie S, Kodama M, Li L, et al. Evaluation of transfection efficiency in skeletal muscle using nano/microbubbles and ultrasound. Ultrasound Med Biol. 2010;36:1196–205.

    Article  PubMed  Google Scholar 

  3. Watanabe Y, Horie S, Funaki Y, Kikuchi Y, Yamazaki H, Ishii K, et al. Delivery of Na/I symporter gene into skeletal muscle using nanobubbles and ultrasound: visualization of gene expression by PET. J Nucl Med. 2010;51:951–8.

    Article  PubMed  CAS  Google Scholar 

  4. Suzuki R, Oda Y, Utoguchi N, Namai E, Taira Y, Okada N, et al. A novel strategy utilizing ultrasound for antigen delivery in dendritic cell-based cancer immunotherapy. J Control Release. 2009;133:198–205.

    Article  PubMed  CAS  Google Scholar 

  5. Kodama T, Tomita N, Horie S, Sax N, Iwasaki H, Suzuki R, et al. Morphological study of acoustic liposomes using transmission electron microscopy. J Electron Microsc (Tokyo). 2010;59:187–96.

    Article  Google Scholar 

  6. Huang S-L. Liposomes in ultrasonic drug and gene delivery. Adv Drug Deliv Rev. 2008;60:1167–76.

    Article  PubMed  CAS  Google Scholar 

  7. Correas J-M, Meuter AR, Singlas E, Kessler DR, Worah D, Quay SC. Human pharmacokinetics of a perfluorocarbon ultrasound contrast agent evaluated with gas chromatography. Ultrasound Med Biol. 2001;27:565–70.

    Article  PubMed  CAS  Google Scholar 

  8. Morel DR, Schwieger I, Hohn L, Terrettaz J, Llull JB, Cornioley YA, et al. Human pharmacokinetics and safety evaluation of SonoVue, a new contrast agent for ultrasound imaging. Invest Radiol. 2000;35:80–5.

    Article  PubMed  CAS  Google Scholar 

  9. Correas J-M, Bridal L, Lesavre A, Méjean A, Claudon M, Hélénon O. Ultrasound contrast agents: properties, principles of action, tolerance, and artifacts. Eur Radiol. 2001;11:1316–28.

    Article  PubMed  CAS  Google Scholar 

  10. Sarkar K, Katiyar A, Jain P. Growth and dissolution of an encapsulated contrast microbubble: effects of encapsulation permeability. Ultrasound Med Biol. 2009;35:1385–96.

    Article  PubMed  Google Scholar 

  11. Duncanand PB, Needham D. Test of the Epstein-Plesset model for gas microparticle dissolution in aqueous media: Effect of surface tension and gas undersaturation in solution. Langmuir. 2004;20:2567–78.

    Article  Google Scholar 

  12. Suzuki R, Takizawa T, Negishi Y, Utoguchi N, Maruyama K. Effective gene delivery with liposomal bubbles and ultrasound as novel non-viral system. J Drug Target. 2007;15:531–7.

    Article  PubMed  CAS  Google Scholar 

  13. Suzuki R, et al. Gene delivery by combination of novel liposomal bubbles with perfluoropropane and ultrasound. J Control Release. 2007;117:130–6.

    Article  PubMed  CAS  Google Scholar 

  14. Negishi Y, Tsunoda Y, Endo-Takahashi Y, Oda Y, Suzuki R, Maruyama K, et al. Local gene delivery system by bubble liposomes and ultrasound exposure into joint synovium. J Drug Deliv. 2011;2011.

  15. Ikeda-Dantsuji Y, Feril LB, Tachibana K, Ogawa K, Endo H, Harada Y, et al. Synergistic effect of ultrasound and antibiotics against Chlamydia trachomatis-infected human epithelial cells in vitro. Ultrason Sonochem. 2010.

  16. Alkan-Onyuksel H, Demos SM, Lanza GM, Vonesh MJ, Klegerman ME, Kane BJ, et al. Development of inherently echogenic liposomes as an ultrasonic contrast agent. J Pharm Sci. 1996;85:486–90.

    Article  PubMed  CAS  Google Scholar 

  17. Buchanan KD, Huang S, Kim H, MacDonald RC, McPherson DD. Echogenic liposome compositions for increased retention of ultrasound reflectivity at physiologic temperature. J Pharm Sci. 2008;97:2242–9.

    Article  PubMed  CAS  Google Scholar 

  18. Huang SL, Hamilton AJ, Nagaraj A, Tiukinhoy SD, Klegerman ME, McPherson DD, et al. Improving ultrasound reflectivity and stability of echogenic liposomal dispersions for use as targeted ultrasound contrast agents. J Pharm Sci. 2001;90:1917–26.

    Article  PubMed  CAS  Google Scholar 

  19. Papahadjopoulos D, Allen TM, Gabizon A, Mayhew E, Matthay K, Huang SK, et al. Sterically stabilized liposomes: improvements in pharmacokinetics and antitumor therapeutic efficacy. Proc Natl Acad Sci USA. 1991;88:11460–4.

    Article  PubMed  CAS  Google Scholar 

  20. Suzuki R, Takizawa T, Negishi Y, Utoguchi N, Sawamura K, Tanaka K, et al. Tumor specific ultrasound enhanced gene transfer in vivo with novel liposomal bubbles. J Control Release. 2008;125:137–44.

    Article  PubMed  CAS  Google Scholar 

  21. Tanaka Y, Komori H, Mori S, Soga Y, Tsubaki T, Terada M, et al. Evaluating the role of rheumatoid factors for the development of rheumatoid arthritis in a mouse model with a newly established ELISA system. Tohoku J Exp Med. 2010;220:199–206.

    Article  PubMed  CAS  Google Scholar 

  22. Needham D, Hristova K, McIntosh TJ, Dewhirst M, Wu N, Lasic DD. Polymer-grafted liposomes: physical basis for the “Stealth” property. J Liposome Res. 1992;2:411–30.

    Article  CAS  Google Scholar 

  23. Bordenand MA, Longo ML. Dissolution behavior of lipid monolayer-coated. Air-filled microbubbles: effect of lipid hydrophobic chain length. Langmuir. 2002;18:9225–33.

    Article  Google Scholar 

  24. Bordenand MA, Longo ML. Oxygen permeability of fully condensed lipid monolayers. J Phys Chem B. 2004;108:6009–16.

    Article  Google Scholar 

  25. Garbuzenko O, Barenholz Y, Priev A. Effect of grafted PEG on liposome size and on compressibility and packing of lipid bilayer. Chem Phys Lipids. 2005;135:117–29.

    Article  PubMed  CAS  Google Scholar 

  26. Smith DAB, Vaidya SS, Kopechek JA, Huang S-L, Klegerman ME, McPherson DD, et al. Ultrasound-triggered release of recombinant tissue-type plasminogen activator from echogenic liposomes. Ultrasound Med Biol. 2010;36:145–57.

    Article  PubMed  Google Scholar 

  27. Hitchcock KE, Caudell DN, Sutton JT, Klegerman ME, Vela D, Pyne-Geithman GJ, et al. Ultrasound-enhanced delivery of targeted echogenic liposomes in a novel ex vivo mouse aorta model. J Control Release. 2010;144:288–95.

    Article  PubMed  CAS  Google Scholar 

  28. Rappolt M, Vidal MF, Kriechbaum M, Steinhart M, Amenitsch H, Bernstorff S, et al. Structural, dynamic and mechanical properties of POPC at low cholesterol concentration studied in pressure/temperature space. Eur Biophys J. 2003;31:575–85.

    PubMed  CAS  Google Scholar 

  29. Liang X, Mao G, Ng KYS. Mechanical properties and stability measurement of cholesterol-containing liposome on mica by atomic force microscopy. J Colloid Interface Sci. 2004;278:53–62.

    Article  PubMed  CAS  Google Scholar 

  30. Rubenstein JL, Smith BA, McConnell HM. Lateral diffusion in binary mixtures of cholesterol and phosphatidylcholines. Proc Natl Acad Sci USA. 1979;76:15–8.

    Article  PubMed  CAS  Google Scholar 

  31. Garbuzenko O, Zalipsky S, Qazen M, Barenholz Y. Electrostatics of PEGylated micelles and liposomes containing charged and neutral lipopolymers. Langmuir. 2005;21:2560–8.

    Article  PubMed  Google Scholar 

  32. Kabalnov A, Bradley JA, Flaim S, Klein D, Pelura T, Peters B, et al. Dissolution of multicomponent microbubbles in the bloodstream: 2. Experiment. Ultrasound Med Biol. 1998;24:751–60.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments AND DISCLOSURES

We are sincerely grateful to Rui Chen, Sachiko Horie, Yukiko Watanabe (Department of Biomedical Engineering, Tohoku University) and Li Li (Department of Radiology, Tohoku University Graduate School of Medicine) for providing technical advice on in vivo ultrasound imaging. We thank Shiro Mori for providing us with MXH-10/Mo/lpr/lpr mice, and Thirumala Govender for her invaluable help and knowledge regarding nanoparticles and polymers. T. Kodama received a Grant-in-Aid for Scientific Research (B) (23300183) and the Grant-in-Aid for challenging exploratory research (24650286).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tetsuya Kodama.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sax, N., Kodama, T. Optimization of Acoustic Liposomes for Improved In Vitro and In Vivo Stability. Pharm Res 30, 218–224 (2013). https://doi.org/10.1007/s11095-012-0864-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-012-0864-8

KEY WORDS

Navigation