Skip to main content
Log in

Influence of Process Conditions on the Crystallization and Transition of Metastable Mannitol Forms in Protein Formulations During Lyophilization

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

To study the impact of different process conditions and formulation compositions on metastable mannitol forms in protein formulations during lyophilization.

Methods

Mannitol was studied with and without other formulation components. A cryostage was used to mimic the different processing steps during lyophilization. The different mannitol forms were monitored and quantified with an in situ Raman spectroscopic method. In addition, a Raman imaging method was developed to characterize the spatial distribution of mannitol forms in final lyophilization samples from the freeze-drying stage.

Results

Amorphous mannitol was observed during fast cooling (10°C/min) and with the addition of other formulation component. Amorphous mannitol crystallized into mainly δ and hemihydrate forms during annealing at −20°C. Under vacuum without moisture, dried amorphous mannitol could transform to mainly α form at 45°C and greater. The transformation mechanism of the hemihydrate mannitol was similar to that of amorphous form.

Conclusion

Mannitol tends to crystallize into stable crystalline forms by itself, but the addition of lyoprotectant (e.g. sucrose) and protein helps stabilize the metastable forms (hemihydrate and amorphous). The metastable forms are capable of transforming into mixtures of different forms, with heat and moisture being the critical processing factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

REFERENCES

  1. Izutsu K, Yoshioka S, Terao T. Decreased protein-stabilizing effects of cryoprotectants due to crystallization. Pharm Res. 1993;10(8):1232–7.

    Article  PubMed  CAS  Google Scholar 

  2. Izutsu K, Yoshioka S, Terao T. Effect of mannitol crystallinity on the stabilization of enzymes during freeze-drying. Chem Pharm Bull. 1994;42(1):5–8.

    Article  PubMed  CAS  Google Scholar 

  3. Johnson RE, Kirchhoff CF, Gaud HT. Mannitol-sucrose mixtures-versatile formulations for protein lyophilization. J Pharm Sci. 2002;91(4):914–22.

    Article  PubMed  CAS  Google Scholar 

  4. Cleland JL, Lam X, Kendrick B, Yang J, Yang T, Overcashier D, et al. A specific molar ratio of stabilizer to protein is required for storage stability of a lyophilized monoclonal antibody. J Pharm Sci. 2001;90(3):310–21.

    Article  PubMed  CAS  Google Scholar 

  5. Burger A, Henck JO, Hetz S, Rollinger JM, Weissnicht AA, Stottner H. Energy/temperature diagram and compression behavior of the polymorphs of D-mannitol. J Pharm Sci. 2000;89(4):457–68.

    Article  PubMed  CAS  Google Scholar 

  6. Yu L, Milton N, Groleau EG, Mishra DS, Vansickle RE. Existence of a mannitol hydrate during freeze-drying and practical implications. J Pharm Sci. 1999;88(2):196–8.

    Article  PubMed  CAS  Google Scholar 

  7. Nunes C, Suryanarayanan R, Botez C, Stephens PW. Characterization and crystal structure of D-mannitol hemihydrate. J Pharm Sci. 2004;93(11):2800–9.

    Article  PubMed  CAS  Google Scholar 

  8. Cao W, Mao C, Chen W, Lin H, Krishnan S, Cauchon N. Differentiation and quantitative determination of surface and hydrate water in lyophilized mannitol using NIR spectroscopy. J Pharm Sci. 2006;95(9):2077–86.

    Article  PubMed  CAS  Google Scholar 

  9. Kim AI, Akers MJ, Nail SL. The physical state of mannitol after freeze-drying: effects of mannitol concentration, freezing rate, and a noncrystallizing cosolute. J Pharm Sci. 1998;87(8):931–5.

    Article  PubMed  CAS  Google Scholar 

  10. Telang C, Yu L, Suryanarayanan R. Effective inhibition of mannitol crystallization in frozen solutions by sodium chloride. Pharm Res. 2003;20(4):660–7.

    Article  PubMed  CAS  Google Scholar 

  11. Cavatur RK, Vemuri NM, Pyne A, Chrzan Z, Toledo-Velasquez D, Suryanarayanan R. Crystallization behavior of mannitol in frozen aqueous solutions. Pharm Res. 2002;19(6):894–900.

    Article  PubMed  CAS  Google Scholar 

  12. Shalaev EY, Zografi G. How does residual water affect the solid-state degradation of drugs in the amorphous state? J Pharm Sci. 1996;85(11):1137–41.

    Article  PubMed  CAS  Google Scholar 

  13. Liu WR, Langer R, Klibanov M. Moisture-induced aggregation of lyophilized proteins in the solid state. Biotechnol Bioeng. 1991;37:177–84.

    Article  PubMed  CAS  Google Scholar 

  14. Breen ED, Curley JG, Overcashier DE, Hsu CC, Shire SJ. Effect of moisture on the stability of a lyophilized humanized monoclonal antibody formulation. Pharm Res. 2001;18(9):1345–53.

    Article  PubMed  CAS  Google Scholar 

  15. Pikal MJ, Dellerman K, Roy ML. Formulation and stability of freeze-dried proteins: effects of moisture and oxygen on the stability of freeze-dried formulations of human growth hormone. Dev Biol Standard. 1991;74:21–38.

    Google Scholar 

  16. Dixon D, Tchessalov S, Barry A, Warne N. The impact of protein concentration on mannitol and sodium chloride crystallinity and polymorphism upon lyophilization. J Pharm Sci. 2009;98(9):3419–29.

    Article  PubMed  CAS  Google Scholar 

  17. Liao X, Krishnamurthy R, Suryanarayanan R. Influence of the active pharmaceutical ingredient concentration on the physical state of mannitol -implications in freeze-drying. Pharm Res. 2005;22(11):1978–85.

    Article  PubMed  CAS  Google Scholar 

  18. Liao X, Krishnamurthy R, Suryanarayanan R. Influence of processing conditions on the physical state of mannitol-implications in freeze-drying. Pharm Res. 2007;24(2):370–6.

    Article  PubMed  CAS  Google Scholar 

  19. Beattie JR, Barrett LJ, Malone JF, McGarvey JJ, Nieuwenhuyzen M, Kett VL. Investigation into the subambient behavior of aqueous mannitol solutions using temeprature-controlled Raman microscopy. Eur J Pharm Biopharm. 2007;67(2):569–78.

    Article  PubMed  CAS  Google Scholar 

  20. Xie Y, Cao W, Krishnan S, Lin H, Cauchon N. Characterization of mannitol polymorphic forms in lyophilized protein formulations using a Multivariate Curve Resoultion (MCR)-based Raman spectroscopic method. Pharm Res. 2008;25(10):2292–301.

    Article  PubMed  CAS  Google Scholar 

  21. Bhargava R, Schaeberle MD, Levin IW. Raman and mid-infrared microspectroscopic imaging. In: Braiman MS, Gregoriou VG, editors. Vibrational spectroscopy of biological and polymeric materials. CRC Press; 2006. p. 215–52.

  22. Markwort L, Kip B. Micro-Raman imaging of heterogeneous polymer systems: general applications and limitations. J Appl Polym Sci. 1996;61(2):231–54.

    Article  CAS  Google Scholar 

  23. Turner II JF, Treado PJ. LCTF Raman chemical imaging in the near-infrared. Proc SPIE. 1997;3061:280–3.

    Article  CAS  Google Scholar 

  24. Cavatur RK, Suryanarayanan R. Characterization of phase transitions during freeze-drying by in situ X-ray powder diffractometry. Pharm Dev Technol. 1998;3(4):579–86.

    Article  PubMed  CAS  Google Scholar 

  25. Yu L, Mishra DS, Rigsbee DR. Determination of the glass properties of D-mannitol using sorbitol as an impurity. J Pharm Sci. 1998;87(6):774–7.

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

The authors thank Nina Cauchon for discussion and the summer intern program at Amgen Inc. for funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenjin Cao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cao, W., Xie, Y., Krishnan, S. et al. Influence of Process Conditions on the Crystallization and Transition of Metastable Mannitol Forms in Protein Formulations During Lyophilization. Pharm Res 30, 131–139 (2013). https://doi.org/10.1007/s11095-012-0855-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-012-0855-9

KEY WORDS

Navigation