Skip to main content

Advertisement

Log in

RAFTsomes Containing Epitope-MHC-II Complexes Mediated CD4+ T Cell Activation and Antigen-Specific Immune Responses

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

To develop a liposome formulation incorporating antigen-presenting cells (APCs) membrane microdomains with enriched epitope/MHC complexes to evaluate the activities of these liposomes (RAFTsomes) to activate T cells and prime immune responses.

Methods

We isolated membrane microdomain structures that contained the epitope/MHC complexes from ovalbumin (OVA) primed dendritic cells (DCs), and reconstituted them on liposomes surface by detergent dialysis. The resulted RAFTsomes were purified by density gradient centrifugation. Their T cell activation functions were evaluated by IL-2 secreting and proliferation assays in vitro. In vivo immune responses and the protective effect against OVA expressing EG.7 tumor challenge were also examined.

Results

Membrane microdomains containing enriched epitope/MHC complexes can be reconstituted into liposomes with defined size and composition. The integrity and activities of these complexes after reconstitution were confirmed by in vitro T cell assays. OVA epitope loaded RAFTsomes injected in vivo resulted in high anti-OVA IgG production (predominantly IgG1). The immunized mice were protected from EG.7 tumor cell inoculation challenge.

Conclusions

Based on these findings, we propose that RAFTsomes can be prepared with unique properties that may be used as an antigen delivery system for immunotherapeutic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

APCs:

antigen-presenting cells

DCs:

dendritic cells

DOPC:

1,2-dioleoyl-sn-glycero-3-phosphocholine

MHC:

major histocompatibility complex

OVA:

ovalbumin

REFERENCES

  1. Gilboa E. DC-based cancer vaccines. J Clin Invest. 2007;117(5):1195–203.

    Article  PubMed  CAS  Google Scholar 

  2. Jahnisch H, Fussel S, Kiessling A, Wehner R, Zastrow S, Bachmann M, et al. Dendritic cell-based immunotherapy for prostate cancer. Clin Dev Immunol. 2010;2010:517493.

    Article  PubMed  Google Scholar 

  3. Kantoff PW, Higano CS, Shore ND, Berger ER, Small EJ, Penson DF, et al. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med. 2010;363(5):411–22.

    Article  PubMed  CAS  Google Scholar 

  4. Palucka K, Banchereau J, Mellman I. Designing vaccines based on biology of human dendritic cell subsets. Immunity. 2010;33(4):464–78.

    Article  PubMed  CAS  Google Scholar 

  5. Dudziak D, Kamphorst AO, Heidkamp GF, Buchholz VR, Trumpfheller C, Yamazaki S, et al. Differential antigen processing by dendritic cell subsets in vivo. Science. 2007;315(5808):107–11.

    Article  PubMed  CAS  Google Scholar 

  6. Mellman I, Steinman RM. Dendritic cells: specialized and regulated antigen processing machines. Cell. 2001;106(3):255–8.

    Article  PubMed  CAS  Google Scholar 

  7. Harding CV, Unanue ER. Quantitation of antigen-presenting cell MHC class II/peptide complexes necessary for T-cell stimulation. Nature. 1990;346(6284):574–6.

    Article  PubMed  CAS  Google Scholar 

  8. Ma Z, Sharp KA, Janmey PA, Finkel TH. Surface-anchored monomeric agonist pMHCs alone trigger TCR with high sensitivity. PLoS Biol. 2008;6(2):e43.

    Article  PubMed  Google Scholar 

  9. Prakken B, Wauben M, Genini D, Samodal R, Barnett J, Mendivil A, et al. Artificial antigen-presenting cells as a tool to exploit the immune ‘synapse’. Nat Med. 2000;6(12):1406–10.

    Article  PubMed  CAS  Google Scholar 

  10. Turtle CJ, Riddell SR. Artificial antigen-presenting cells for use in adoptive immunotherapy. Cancer J. 2010;16(4):374–81.

    Article  PubMed  CAS  Google Scholar 

  11. Giannoni F, Barnett J, Bi K, Samodal R, Lanza P, Marchese P, et al. Clustering of T cell ligands on artificial APC membranes influences T cell activation and protein kinase C theta translocation to the T cell plasma membrane. J Immunol. 2005;174(6):3204–11.

    PubMed  CAS  Google Scholar 

  12. Anderson HA, Hiltbold EM, Roche PA. Concentration of MHC class II molecules in lipid rafts facilitates antigen presentation. Nat Immunol. 2000;1(2):156–62.

    Article  PubMed  CAS  Google Scholar 

  13. Eren E, Yates J, Cwynarski K, Preston S, Dong R, Germain C, et al. Location of major histocompatibility complex class II molecules in rafts on dendritic cells enhances the efficiency of T-cell activation and proliferation. Scand J Immunol. 2006;63(1):7–16.

    Article  PubMed  CAS  Google Scholar 

  14. Hiltbold EM, Poloso NJ, Roche PA. MHC class II-peptide complexes and APC lipid rafts accumulate at the immunological synapse. J Immunol. 2003;170(3):1329–38.

    PubMed  CAS  Google Scholar 

  15. Khandelwal S, Roche PA. Distinct MHC class II molecules are associated on the dendritic cell surface in cholesterol-dependent membrane microdomains. J Biol Chem. 2010;285(46):35303–10.

    Article  PubMed  CAS  Google Scholar 

  16. Thery C, Duban L, Segura E, Veron P, Lantz O, Amigorena S. Indirect activation of naive CD4+ T cells by dendritic cell-derived exosomes. Nat Immunol. 2002;3(12):1156–62.

    Article  PubMed  CAS  Google Scholar 

  17. van Niel G, Porto-Carreiro I, Simoes S, Raposo G. Exosomes: a common pathway for a specialized function. J Biochem. 2006;140(1):13–21.

    Article  PubMed  Google Scholar 

  18. Chaput N, Flament C, Viaud S, Taieb J, Roux S, Spatz A, et al. Dendritic cell derived-exosomes: biology and clinical implementations. J Leukoc Biol. 2006;80(3):471–8.

    Article  PubMed  CAS  Google Scholar 

  19. Delcayre A, Le Pecq JB. Exosomes as novel therapeutic nanodevices. Curr Opin Mol Ther. 2006;8(1):31–8.

    PubMed  CAS  Google Scholar 

  20. Zitvogel L, Regnault A, Lozier A, Wolfers J, Flament C, Tenza D, et al. Eradication of established murine tumors using a novel cell-free vaccine: dendritic cell-derived exosomes. Nat Med. 1998;4(5):594–600.

    Article  PubMed  CAS  Google Scholar 

  21. Escudier B, Dorval T, Chaput N, Andre F, Caby MP, Novault S, et al. Vaccination of metastatic melanoma patients with autologous dendritic cell (DC) derived-exosomes: results of thefirst phase I clinical trial. J Transl Med. 2005;3(1):10.

    Article  PubMed  Google Scholar 

  22. Dai S, Wei D, Wu Z, Zhou X, Wei X, Huang H, et al. Phase I clinical trial of autologous ascites-derived exosomes combined with GM-CSF for colorectal cancer. Mol Ther. 2008;16(4):782–90.

    Article  PubMed  CAS  Google Scholar 

  23. Viaud S, Thery C, Ploix S, Tursz T, Lapierre V, Lantz O, et al. Dendritic cell-derived exosomes for cancer immunotherapy: what’s next? Cancer Res. 2010;70(4):1281–5.

    Article  PubMed  CAS  Google Scholar 

  24. Laulagnier K, Motta C, Hamdi S, Roy S, Fauvelle F, Pageaux JF, et al. Mast cell- and dendritic cell-derived exosomes display a specific lipid composition and an unusual membrane organization. Biochem J. 2004;380(Pt 1):161–71.

    Article  PubMed  CAS  Google Scholar 

  25. Simons K, Ikonen E. Functional rafts in cell membranes. Nature. 1997;387(6633):569–72.

    Article  PubMed  CAS  Google Scholar 

  26. Brown DA, London E. Functions of lipid rafts in biological membranes. Annu Rev Cell Dev Biol. 1998;14:111–36.

    Article  PubMed  CAS  Google Scholar 

  27. Simons K, Gerl MJ. Revitalizing membrane rafts: new tools and insights. Nat Rev Mol Cell Biol. 2010;11(10):688–99.

    Article  PubMed  CAS  Google Scholar 

  28. Chen J, Li Z, Huang H, Yang Y, Ding Q, Mai J, et al. Improved antigen cross-presentation by polyethyleneimine-based nanoparticles. Int J Nanomedicine. 2011;6:77–84.

    Article  PubMed  CAS  Google Scholar 

  29. Kropshofer H, Spindeldreher S, Rohn TA, Platania N, Grygar C, Daniel N, et al. Tetraspan microdomains distinct from lipid rafts enrich select peptide-MHC class II complexes. Nat Immunol. 2002;3(1):61–8.

    Article  PubMed  CAS  Google Scholar 

  30. Figdor CG, de Vries IJ, Lesterhuis WJ, Melief CJ. Dendritic cell immunotherapy: mapping the way. Nat Med. 2004;10(5):475–80.

    Article  PubMed  CAS  Google Scholar 

  31. Lesterhuis WJ, de Vries IJ, Adema GJ, Punt CJ. Dendritic cell-based vaccines in cancer immunotherapy: an update on clinical and immunological results. Ann Oncol. 2004;15 Suppl 4:iv145–51.

    Article  PubMed  Google Scholar 

  32. Setterblad N, Roucard C, Bocaccio C, Abastado JP, Charron D, Mooney N. Composition of MHC class II-enriched lipid microdomains is modified during maturation of primary dendritic cells. J Leukoc Biol. 2003;74(1):40–8.

    Article  PubMed  CAS  Google Scholar 

  33. Vidalain PO, Azocar O, Servet-Delprat C, Rabourdin-Combe C, Gerlier D, Manie S. CD40 signaling in human dendritic cells is initiated within membrane rafts. EMBO J. 2000;19(13):3304–13.

    Article  PubMed  CAS  Google Scholar 

  34. Clatza A, Bonifaz LC, Vignali DA, Moreno J. CD40-induced aggregation of MHC class II and CD80 on the cell surface leads to an early enhancement in antigen presentation. J Immunol. 2003;171(12):6478–87.

    PubMed  CAS  Google Scholar 

  35. Thery C, Zitvogel L, Amigorena S. Exosomes: composition, biogenesis and function. Nat Rev Immunol. 2002;2(8):569–79.

    PubMed  CAS  Google Scholar 

  36. Meyer zum Bueschenfelde CO, Unternaehrer J, Mellman I, Bottomly K. Regulated recruitment of MHC class II and costimulatory molecules to lipid rafts in dendritic cells. J Immunol. 2004;173(10):6119–24.

    PubMed  CAS  Google Scholar 

  37. Allen PM, Matsueda GR, Evans RJ, Dunbar Jr JB, Marshall GR, Unanue ER. Identification of the T-cell and Ia contact residues of a T-cell antigenic epitope. Nature. 1987;327(6124):713–5.

    Article  PubMed  CAS  Google Scholar 

  38. MacLeod M, Kwakkenbos MJ, Crawford A, Brown S, Stockinger B, Schepers K, et al. CD4 memory T cells survive and proliferate but fail to differentiate in the absence of CD40. J Exp Med. 2006;203(4):897–906.

    Article  PubMed  CAS  Google Scholar 

  39. Monks CR, Freiberg BA, Kupfer H, Sciaky N, Kupfer A. Three-dimensional segregation of supramolecular activation clusters in T cells. Nature. 1998;395(6697):82–6.

    Article  PubMed  CAS  Google Scholar 

  40. Keller S, Sanderson MP, Stoeck A, Altevogt P. Exosomes: from biogenesis and secretion to biological function. Immunol Lett. 2006;107(2):102–8.

    Article  PubMed  CAS  Google Scholar 

  41. Harding CV, Collins DS, Slot JW, Geuze HJ, Unanue ER. Liposome-encapsulated antigens are processed in lysosomes, recycled, and presented to T cells. Cell. 1991;64(2):393–401.

    Article  PubMed  CAS  Google Scholar 

  42. Reddy R, Zhou F, Nair S, Huang L, Rouse BT. In vivo cytotoxic T lymphocyte induction with soluble proteins administered in liposomes. J Immunol. 1992;148(5):1585–9.

    PubMed  CAS  Google Scholar 

  43. van Mierlo GJ, Boonman ZF, Dumortier HM, den Boer AT, Fransen MF, Nouta J, et al. Activation of dendritic cells that cross-present tumor-derived antigen licenses CD8+ CTL to cause tumor eradication. J Immunol. 2004;173(11):6753–9.

    PubMed  Google Scholar 

  44. Maitre N, Brown JM, Demcheva M, Kelley JR, Lockett MA, Vournakis J, et al. Primary T-cell and activated macrophage response associated with tumor protection using peptide/poly-N-acetyl glucosamine vaccination. Clin Cancer Res. 1999;5(5):1173–82.

    PubMed  CAS  Google Scholar 

  45. Schmidt W, Buschle M, Zauner W, Kirlappos H, Mechtler K, Trska B, et al. Cell-free tumor antigen peptide-based cancer vaccines. Proc Natl Acad Sci U S A. 1997;94(7):3262–7.

    Article  PubMed  CAS  Google Scholar 

  46. Mishra N, Gupta PN, Mahor S, Khatri K, Goyal AK, Vyas SP. Liposomes as adjuvant for combination vaccines. Indian J Exp Biol. 2007;45(3):237–41.

    PubMed  CAS  Google Scholar 

  47. Tanaka Y, Taneichi M, Kasai M, Kakiuchi T, Uchida T. Liposome-coupled antigens are internalized by antigen-presenting cells via pinocytosis and cross-presented to CD8 T cells. PLoS One. 2010;5(12):e15225.

    Article  PubMed  Google Scholar 

  48. Grenningloh R, Darj A, Bauer H, zur Lage S, Chakraborty T, Jacobs T, et al. Liposome-encapsulated antigens induce a protective CTL response against Listeria monocytogenes independent of CD4+ T cell help. Scand J Immunol. 2008;67(6):594–602.

    Article  PubMed  CAS  Google Scholar 

  49. Bronshtein T, Toledano N, Danino D, Pollack S, Machluf M. Cell derived liposomes expressing CCR5 as a new targeted drug-delivery system for HIV infected cells. J Control Release. 2011;151(2):139–48.

    Article  PubMed  CAS  Google Scholar 

  50. Henriksen-Lacey M, Korsholm KS, Andersen P, Perrie Y, Christensen D. Liposomal vaccine delivery systems. Expert Opin Drug Deliv. 2011;8(4):505–19.

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

We like to thank Prof. Xuetao Cao for the generous gift of MF2.2D9 and EG.7 cell lines and Prof. Tao Xi for assisting with the figures preparation. The TEM and LC-MS/MS analysis were performed at the Instrumental Analysis Center of Shanghai Jiao Tong University. This study was supported by grants from the Natural Science Foundation of China No. 30571721 and 30825045.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuhong Xu.

Electronic supplementary material

A table (Table SI) of proteomics study with lipid rafts extracted from mDCs.

ESM 1

(DOC 31 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ding, Q., Chen, J., Wei, X. et al. RAFTsomes Containing Epitope-MHC-II Complexes Mediated CD4+ T Cell Activation and Antigen-Specific Immune Responses. Pharm Res 30, 60–69 (2013). https://doi.org/10.1007/s11095-012-0849-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-012-0849-7

KEY WORDS

Navigation