, Volume 29, Issue 12, pp 3312-3324
Date: 14 Jul 2012

Mechanisms of Tumor Vascular Priming by a Nanoparticulate Doxorubicin Formulation

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

ABSTRACT

Purpose

Tumor vascular normalization by antiangiogenic agents may increase tumor perfusion but reestablish vascular barrier properties in CNS tumors. Vascular priming via nanoparticulate carriers represents a mechanistically distinct alternative. This study investigated mechanisms by which sterically-stabilized liposomal doxorubicin (SSL-DXR) modulates tumor vascular properties.

Methods

Functional vascular responses to SSL-DXR were investigated in orthotopic rat brain tumors using deposition of fluorescent permeability probes and dynamic contrast-enhanced magnetic resonance imaging. Microvessel density and tumor burden were quantified by immunohistochemistry (CD-31) and quantitative RT-PCR (VE-cadherin).

Results

Administration of SSL-DXR (5.7 mg/kg iv) initially (3–4 days post-treatment) decreased tumor vascular permeability, ktrans (vascular exchange constant), vascular endothelial cell content, microvessel density, and deposition of nanoparticulates. Tumor vasculature became less chaotic. Permeability and perfusion returned to control values 6–7 days post-treatment, but intratumor SSL-DXR depot continued to effect tumor vascular endothelial compartment 7–10 days post-treatment, mediating enhanced permeability.

Conclusions

SSL-DXR ultimately increased tumor vascular permeability, but initially normalized tumor vasculature and decreased tumor perfusion, permeability, and nanoparticulate deposition. These temporal changes in vascular integrity resulting from a single SSL-DXR dose have important implications for the design of combination therapies incorporating nanoparticle-based agents for tumor vascular priming.