Skip to main content

Advertisement

Log in

Activation of Antigen-Specific T Cell-Responses by Mannan-Decorated PLGA Nanoparticles

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

Mannosylation of vaccines is a promising strategy to selectively target vaccine antigens to the mannose receptor expressed on dendritic cells (DCs). The purpose of this study was to investigate the effect of mannan (MN) chemically conjugated to poly(D, L-lactide-co-glycolic acid) (PLGA) nanoparticles (NPs) on antigen-specific T-cell responses elicited by a model antigen (ovalbumin, OVA) loaded in PLGA-NPs.

Methods

In vitro T-cell proliferation assay was done to assess the ability of DCs treated with OVA-NPs (±MN decoration) to induce antigen-specific T-cell activation. The efficacy of this vaccination strategy was further evaluated in vivo, where T-cell proliferation was performed to evaluate activation of T-cell responses in lymph nodes and spleens isolated from the vaccinated mice.

Results

Our results demonstrate that MN-decorated antigen-loaded PLGA-NPs simultaneously enhanced antigen-specific CD4+ and CD8+ T-cell responses compared to non-decorated NPs.

Conclusions

MN decoration of PLGA-NPs is a promising strategy for enhancing antigen-specific T-cell responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

REFERENCES

  1. Keler T, Ramakrishna V, Fanger MW. Mannose receptor-targeted vaccines. Expert Opin Biol Ther. 2004;4(12):1953–62.

    Article  PubMed  CAS  Google Scholar 

  2. White KL, Rades T, Furneaux RH, Tyler PC, Hook S. Mannosylated liposomes as antigen delivery vehicles for targeting to dendritic cells. J Pharm Pharmacol. 2006;58(6):729–37.

    Article  PubMed  CAS  Google Scholar 

  3. Espuelas S, Thumann C, Heurtault B, Schuber F, Frisch B. Influence of ligand valency on the targeting of immature human dendritic cells by mannosylated liposomes. Bioconjug Chem. 2008;19(12):2385–93.

    Article  PubMed  CAS  Google Scholar 

  4. Joralemon MJ, Murthy KS, Remsen EE, Becker ML, Wooley KL. Synthesis, characterization, and bioavailability of mannosylated shell cross-linked nanoparticles. Biomacromolecules. 2004;5(3):903–13.

    Article  PubMed  CAS  Google Scholar 

  5. Jain S, Vyas SP. Mannosylated niosomes as adjuvant-carrier system for oral mucosal immunization. J Liposome Res. 2006;16(4):331–45.

    Article  PubMed  CAS  Google Scholar 

  6. Vinogradov E, Petersen B, Bock K. Structural analysis of the intact polysaccharide mannan from Saccharomyces cerevisiae yeast using 1 H and 13 C NMR spectroscopy at 750 MHz. Carbohydr Res. 1998;307(1–2):177–83.

    PubMed  CAS  Google Scholar 

  7. Tada H, Nemoto E, Shimauchi H, Watanabe T, Mikami T, Matsumoto T, et al. Saccharomyces cerevisiae- and Candida albicans-derived mannan induced production of tumor necrosis factor alpha by human monocytes in a CD14- and Toll-like receptor 4-dependent manner. Microbiol Immunol. 2002;46(7):503–12.

    PubMed  CAS  Google Scholar 

  8. Ghotbi Z, Haddadi A, Hamdy S, Hung RW, Samuel J, Lavasanifar A. Active targeting of dendritic cells with mannan-decorated PLGA nanoparticles. J Drug Target. 2010, Jun 30.

  9. Elamanchili P, Diwan M, Cao M, Samuel J. Characterization of poly(D, L-lactic-co-glycolic acid) based nanoparticulate system for enhanced delivery of antigens to dendritic cells. Vaccine. 2004;22(19):2406–12.

    Article  PubMed  CAS  Google Scholar 

  10. Lutsiak ME, Kwon GS, Samuel J. Biodegradable nanoparticle delivery of a Th2-biased peptide for induction of Th1 immune responses. J Pharm Pharmacol. 2006;58(6):739–47.

    Article  PubMed  CAS  Google Scholar 

  11. Diwan M, Elamanchili P, Lane H, Gainer A, Samuel J. Biodegradable nanoparticle mediated antigen delivery to human cord blood derived dendritic cells for induction of primary T cell responses. J Drug Target. 2003;11(8–10):495–507.

    Article  PubMed  CAS  Google Scholar 

  12. Hamdy S, Molavi O, Ma Z, Haddadi A, Alshamsan A, Gobti Z, et al. Co-delivery of cancer-associated antigen and Toll-like receptor 4 ligand in PLGA nanoparticles induces potent CD8+ T cell-mediated anti-tumor immunity. Vaccine. 2008;26(39):5046–57.

    Article  PubMed  CAS  Google Scholar 

  13. Elamanchili P, Lutsiak CM, Hamdy S, Diwan M, Samuel J. “Pathogen-mimicking” nanoparticles for vaccine delivery to dendritic cells. J Immunother. 2007;30(4):378–95.

    Article  PubMed  CAS  Google Scholar 

  14. Fischer S, Schlosser E, Mueller M, Csaba N, Merkle HP, Groettrup M, et al. Concomitant delivery of a CTL-restricted peptide antigen and CpG ODN by PLGA microparticles induces cellular immune response. J Drug Target. 2009 Jul 10.

  15. Schlosser E, Mueller M, Fischer S, Basta S, Busch DH, Gander B, et al. TLR ligands and antigen need to be coencapsulated into the same biodegradable microsphere for the generation of potent cytotoxic T lymphocyte responses. Vaccine. 2008;26(13):1626–37.

    Article  PubMed  CAS  Google Scholar 

  16. Hamdy S, Elamanchili P, Alshamsan A, Molavi O, Satou T, Samuel J. Enhanced antigen-specific primary CD4+ and CD8+ responses by codelivery of ovalbumin and toll-like receptor ligand monophosphoryl lipid A in poly(D, L-lactic-co-glycolic acid) nanoparticles. J Biomed Mater Res A. 2007;81(3):652–62.

    PubMed  Google Scholar 

  17. Lutz MB, Kukutsch N, Ogilvie AL, Rossner S, Koch F, Romani N, et al. An advanced culture method for generating large quantities of highly pure dendritic cells from mouse bone marrow. J Immunol Methods. 1999;223(1):77–92.

    Article  PubMed  CAS  Google Scholar 

  18. Gamvrellis A, Leong D, Hanley JC, Xiang SD, Mottram P, Plebanski M. Vaccines that facilitate antigen entry into dendritic cells. Immunol Cell Biol. 2004;82(5):506–16.

    Article  PubMed  CAS  Google Scholar 

  19. Heuking S, Adam-Malpel S, Sublet E, Iannitelli A, Stefano A, Borchard G. Stimulation of human macrophages (THP-1) using Toll-like receptor-2 (TLR-2) agonist decorated nanocarriers. J Drug Target. 2009;17(8):662–70.

    Article  PubMed  CAS  Google Scholar 

  20. Wischke C, Zimmermann J, Wessinger B, Schendler A, Borchert HH, Peters JH, et al. Poly(I:C) coated PLGA microparticles induce dendritic cell maturation. Int J Pharm. 2009;365(1–2):61–8.

    Article  PubMed  CAS  Google Scholar 

  21. Fischer S, Schlosser E, Mueller M, Csaba N, Merkle HP, Groettrup M, et al. Concomitant delivery of a CTL-restricted peptide antigen and CpG ODN by PLGA microparticles induces cellular immune response. J Drug Target. 2009;17(8):652–61.

    Article  PubMed  CAS  Google Scholar 

  22. San Roman B, Irache JM, Gomez S, Tsapis N, Gamazo C, Espuelas MS. Co-encapsulation of an antigen and CpG oligonucleotides into PLGA microparticles by TROMS technology. Eur J Pharm Biopharm. 2008;70(1):98–108.

    Article  PubMed  CAS  Google Scholar 

  23. Kaiser-Schulz G, Heit A, Quintanilla-Martinez L, Hammerschmidt F, Hess S, Jennen L, et al. Polylactide-coglycolide microspheres co-encapsulating recombinant tandem prion protein with CpG-oligonucleotide break self-tolerance to prion protein in wild-type mice and induce CD4 and CD8 T cell responses. J Immunol. 2007;179(5):2797–807.

    PubMed  CAS  Google Scholar 

  24. Martinez Gomez JM, Fischer S, Csaba N, Kundig TM, Merkle HP, Gander B, et al. A protective allergy vaccine based on CpG- and protamine-containing PLGA microparticles. Pharm Res. 2007;24(10):1927–35.

    Article  PubMed  Google Scholar 

  25. Cruz LJ, Tacken PJ, Fokkink R, Joosten B, Stuart MC, Albericio F, et al. Targeted PLGA nano- but not microparticles specifically deliver antigen to human dendritic cells via DC-SIGN in vitro. J Control Release. Feb 13.

  26. Kammona O, Alexopoulos HA, Karakosta P, Kotti K, Karageorgiou V, Kiparissides C. Nanocarrier aided nasal vaccination: an experimental and computational approach. Ind Eng Chem Res. 2011;50(2):590–601.

    Article  CAS  Google Scholar 

  27. Wattendorf U, Coullerez G, Voros J, Textor M, Merkle HP. Mannose-based molecular patterns on stealth microspheres for receptor-specific targeting of human antigen-presenting cells. Langmuir. 2008;24(20):11790–802.

    Article  PubMed  CAS  Google Scholar 

  28. Lees CJ, Apostolopoulos V, Acres B, Ong CS, Popovski V, McKenzie IF. The effect of T1 and T2 cytokines on the cytotoxic T cell response to mannan-MUC1. Cancer Immunol Immunother. 2000;48(11):644–52.

    Article  PubMed  CAS  Google Scholar 

  29. Lees CJ, Apostolopoulos V, McKenzie IF. Cytokine production from murine CD4 and CD8 cells after mannan-MUC1 immunization. J Interferon Cytokine Res. 1999;19(12):1373–9.

    Article  PubMed  CAS  Google Scholar 

  30. Apostolopoulos V, Pietersz GA, Gordon S, Martinez-Pomares L, McKenzie IF. Aldehyde-mannan antigen complexes target the MHC class I antigen-presentation pathway. Eur J Immunol. 2000;30(6):1714–23.

    Article  PubMed  CAS  Google Scholar 

  31. Newman KD, Kwon GS, Miller GG, Chlumecky V, Samuel J. Cytoplasmic delivery of a macromolecular fluorescent probe by poly(d, l-lactic-co-glycolic acid) microspheres. J Biomed Mater Res. 2000;50(4):591–7.

    Article  PubMed  CAS  Google Scholar 

  32. Reddy ST, Rehor A, Schmoekel HG, Hubbell JA, Swartz MA. In vivo targeting of dendritic cells in lymph nodes with poly(propylene sulfide) nanoparticles. J Control Release. 2006;112(1):26–34.

    Article  PubMed  CAS  Google Scholar 

  33. Reece JC, Vardaxis NJ, Marshall JA, Crowe SM, Cameron PU. Uptake of HIV and latex particles by fresh and cultured dendritic cells and monocytes. Immunol Cell Biol. 2001;79(3):255–63.

    Article  PubMed  CAS  Google Scholar 

  34. Grossmann C, Tenbusch M, Nchinda G, Temchura V, Nabi G, Stone GW, et al. Enhancement of the priming efficacy of DNA vaccines encoding dendritic cell-targeted antigens by synergistic toll-like receptor ligands. BMC Immunol. 2009;10:43.

    Article  PubMed  Google Scholar 

  35. Ferwerda G, Meyer-Wentrup F, Kullberg BJ, Netea MG, Adema GJ. Dectin-1 synergizes with TLR2 and TLR4 for cytokine production in human primary monocytes and macrophages. Cell Microbiol. 2008;10(10):2058–66.

    Article  PubMed  CAS  Google Scholar 

  36. Dennehy KM, Ferwerda G, Faro-Trindade I, Pyz E, Willment JA, Taylor PR, et al. Syk kinase is required for collaborative cytokine production induced through Dectin-1 and Toll-like receptors. Eur J Immunol. 2008;38(2):500–6.

    Article  PubMed  CAS  Google Scholar 

  37. Gantner BN, Simmons RM, Canavera SJ, Akira S, Underhill DM. Collaborative induction of inflammatory responses by dectin-1 and Toll-like receptor 2. J Exp Med. 2003;197(9):1107–17.

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors would like to thank Elaine Moase for proof-reading the manuscript. The authors would like to acknowledge financial support by research grant from Natural Sciences and Engineering Council of Canada (STPGP 336987). This manuscript is dedicated to Prof. Dr. John Samuel, our mentor, who passed away in April 2007 and was an expert in the field of cancer immunotherapy. The authors report no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Azita Haddadi or Afsaneh Lavasanifar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hamdy, S., Haddadi, A., Shayeganpour, A. et al. Activation of Antigen-Specific T Cell-Responses by Mannan-Decorated PLGA Nanoparticles. Pharm Res 28, 2288–2301 (2011). https://doi.org/10.1007/s11095-011-0459-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-011-0459-9

KEY WORDS

Navigation