Skip to main content
Log in

Multicomponent Amorphous Nanofibers Electrospun from Hot Aqueous Solutions of a Poorly Soluble Drug

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

To design and fabricate multicomponent amorphous electrospun nanofibers for synergistically improving the dissolution rate and permeation profiles of poorly water-soluble drugs.

Methods

Nanofibers were designed to be composed of a poorly water soluble drug, helicid, a hydrophilic polymer polyvinylpyrrolidone as filament-forming matrix, sodium dodecyl sulfate as transmembrane enhancer and mannitol as taste masking agent, and were prepared from hot aqueous co-dissolving solutions of them. An elevated temperature electrospinning process was developed to fabricate the composite nanofibers, which were characterized using FESEM, DSC, XRD, ATR-FTIR, in vitro dissolution and permeation tests.

Results

The composite nanofibers were homogeneous with smooth surfaces and uniform structure, and the components were combined together in an amorphous state because of the favorable interactions such as hydrogen bonding, electrostatic interaction and hydrophobic interactions among them. In vitro dissolution and permeation tests demonstrated that the composite nanofibers had a dissolution rate over 26-fold faster than that of crude helicid particles and a 10-fold higher permeation rate across sublingual mucosa.

Conclusions

A new type of amorphous material in the form of nanofibers was prepared from hot aqueous solutions of multiple ingredients using an electrospinning process. The amorphous nanofibers were able to improve the dissolution rate and permeation rate of helicid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

REFERENCES

  1. Tang B, Cheng G, Gu JC, Xu CH. Development of solid self-emulsifying drug delivery systems: preparation techniques and dosage forms. Drug Discov Today. 2008;13:606–12.

    Article  CAS  PubMed  Google Scholar 

  2. Rasenack N, Muller BW. Dissolution rate enhancement by in situ micronization of poorly water-soluble drugs. Pharm Res. 2002;19:1894–900.

    Article  CAS  PubMed  Google Scholar 

  3. Vasconcelos T, Sarmento B, Costa P. Solid dispersions as strategy to improve oral bioavailability of poor water soluble drugs. Drug Discov Today. 2007;12:1068–75.

    Article  CAS  PubMed  Google Scholar 

  4. Blagden N, de Matas M, Gavan PT, York P. Crystal engineering of active pharmaceutical ingredients to improve solubility and dissolution rates. Adv Drug Del Rev. 2007;59:617–30.

    Article  CAS  Google Scholar 

  5. Merisko-Liversidge E, Liversidge GG, Cooper ER. Nanosizing: a formulation approach for poorly-water-soluble compounds. Eur J Pharm Sci. 2003;18:113–20.

    Article  CAS  PubMed  Google Scholar 

  6. Farokhzad OC. Nanotechnology for drug delivery: the perfect partnership. Expert Opin Drug Del. 2008;5:927–9.

    Article  CAS  Google Scholar 

  7. Farokhzad OC, Langer R. Impact of Nanotechnology on Drug Delivery. ACS Nano. 2009;3:16–20.

    Article  CAS  PubMed  Google Scholar 

  8. Moshfeghi AA, Peyman GA. Micro- and nanoparticulates. Adv Drug Deliv Rev. 2005;57:2047–52.

    Article  CAS  PubMed  Google Scholar 

  9. Merisko-Liversidge E, McGurk SL, Liversidge GG. Insulin nanoparticles: a novel formulation approach for poorly water soluble Zn-insulin. Pharm Res. 2004;21:1545–53.

    Article  CAS  PubMed  Google Scholar 

  10. Yin L, Ding J, He C, Cui L, Tang C, Yin C. Drug permeability and mucoadhesion properties of thiolated trimethyl chitosan nanoparticles in oral insulin delivery. Biomaterials. 2009;30:5691–700.

    Article  CAS  PubMed  Google Scholar 

  11. Li H, Zhao X, Ma Y, Zhai G, Li L, Lou H. Enhancement of gastrointestinal absorption of quercetin by solid lipid nanoparticles. J Control Release. 2009;133:238–44.

    Article  CAS  PubMed  Google Scholar 

  12. Li P, Hynes SR, Haefele TF, Pudipeddi M, Royce AE, Serajuddin AT. Development of clinical dosage forms for a poorly water-soluble drug II: formulation and characterization of a novel solid microemulsion preconcentrate system for oral delivery of a poorly water-soluble drug. J Pharm Sci. 2009;98:1750–64.

    Article  CAS  PubMed  Google Scholar 

  13. Merisko-Liversidge E, Liversidge GG. Drug nanoparticles: formulating poorly water-soluble compounds. Toxicol Pathol. 2008;36:43–8.

    Article  CAS  PubMed  Google Scholar 

  14. Amidon GL, Lennernäs H, Shah VP, Crison JR. A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm Res. 1995;12:413–20.

    Article  CAS  PubMed  Google Scholar 

  15. Yu DG, Shen XX, Branford-White C, White K, Zhu LM, Bligh SWA. Oral fast-dissolving drug delivery membranes prepared from electrospun polyvinylpyrrolidone ultrafine fibers. Nanotechnology. 2009;20:055104.

    Article  PubMed  Google Scholar 

  16. Yu DG, Branford-White C, White K, Li XL, Zhu LM. Comparison of solid dispersions in drug delivery membranes from different processes. AAPS PharmSciTech. 2010;11:809–17.

    Article  CAS  PubMed  Google Scholar 

  17. Yu DG, Branford-White C, Li L, Wu XM, Zhu LM. The compatibility of acyclovir with the matrix polymer PAN in the electrospun nanofiber membrane. J Applied Polym Sci. 2010;117:1509–15.

    CAS  Google Scholar 

  18. Yu DG, Zhu LM, White K, Branford-White C. Electrospun nanofiber-based drug delivery systems. Health. 2009;1:67–75.

    Article  Google Scholar 

  19. McKee MG, Layman JM, Cashion MP, Timothy EL. Phospholipid nonwoven electrospun membranes. Science. 2006;311:353–5.

    Article  CAS  PubMed  Google Scholar 

  20. Dzenis Y. Spinning continuous fibres for nanotechnology. Science. 2004;304:1917–9.

    Article  CAS  PubMed  Google Scholar 

  21. Rutledge GC, Fridrikh SV. Formation of fibers by electrospinning. Adv Drug Del Rev. 2007;59:1384–91.

    Article  CAS  Google Scholar 

  22. Ji L, Saquing C, Khan SA, Zhang X. Preparation and characterization of silica nanoparticulate–polyacrylonitrile composite and porous nanofibers. Nanotechnology. 2008;19:085605.

    Article  Google Scholar 

  23. Liu DY, Wang GL, Ma SC, Lin RC. Research on the pharmaceutical active components in Helicia Lour. Chin Tradit Herbal Drugs. 2004;35:593–5.

    CAS  Google Scholar 

  24. Yu DG, Yang XL, Wang Y, Li X, Xu HB. 3DP used for controlled-release helicid tablets. Chin Tradit Patent Med. 2007;29:679–83.

    CAS  Google Scholar 

  25. Chawla G, Bansal AK. Improved dissolution of a poorly water soluble drug in solid dispersions with polymeric and non-polymeric hydrophilic additives. Acta Pharm. 2008;58:257–74.

    Article  CAS  PubMed  Google Scholar 

  26. Whitehea K, Karr N, Mitragotri S. Safe and effective permeation enhancers for oral drug delivery. Pharm Res. 2008;25:1782–8.

    Article  Google Scholar 

  27. Pongpeerapat A, Wanawongthai C, Tozuka Y, Moribe K, Ymamoto K. Formation mechanism of colloidal nanoparticles obtained from probucol/PVP/SDS ternary ground mixture. Int J Pharm. 2008;352:309–16.

    Article  CAS  PubMed  Google Scholar 

  28. Wanawongthai C, Pongpeerapat A, Higashi K, Tozuka Y, Moribea K, Yamamoto K. Nanoparticle formation from probucol/PVP/sodium alkyl sulfate co-ground mixture. Int J Pharm. 2009;376:169–75.

    Article  CAS  PubMed  Google Scholar 

  29. Li D, Xia Y. Electrospinning of nanofibers: reinventing the wheel? Adv Mater. 2004;16:1151–70.

    Article  CAS  Google Scholar 

  30. Wang C, Chien HS, Hsu CH, Wang YC, Wang CT, Lu HA. Electrospinning of polyacrylonitrile solutions at elevated temperatures. Macromolecules. 2007;40:7973–83.

    Article  CAS  Google Scholar 

  31. Givens SR, Gardner KH, Rabolt JF, Chase DB. High-temperature electrospinning of polyethylene microfibers from solution. Macromolecules. 2007;40:608–10.

    Article  CAS  Google Scholar 

  32. Jadhav NR, Gaikwad VL, Nair KJ, Kadam HM. Glass transition temperature: basics and application in pharmaceutical sector. Asian J Pharm. 2009;3:82–9.

    Article  Google Scholar 

  33. McKee MG, Elkins CL, Long TE. Influence of self-complementary hydrogen bonding on solution rheology/electrospinning relationships. Polymer. 2004;45:8705–15.

    Article  CAS  Google Scholar 

  34. Murthy NS, Minor H, Bednarczyk C, Krimm S. Structure of the amorphous phase in oriented polymers. Macromolecules. 1993;26:1712–21.

    Article  CAS  Google Scholar 

  35. Pongpeerapat A, Higashi K, Tozuka Y, Moribe K, Yamamoto K. Molecular interaction among probucol/PVP/SDS multicomponent system investigated by solid-state NMR. Pharm Res. 2006;23:2566–74.

    Article  CAS  PubMed  Google Scholar 

  36. Roscigno P, Asaro F, Pellizer G, Ortana O, Paduano L. Complex Formation between PVP and sodium decyl sulfate. Langmiur. 2003;19:9638–44.

    Article  CAS  Google Scholar 

  37. Verreck G, Chun I, Peeters J, Rosenblatt J, Brewster ME. Preparation and characterization of nanofibers containing amorphous drug dispersion generated by electrostatic spinning. Pharm Res. 2003;20:810–7.

    Article  CAS  PubMed  Google Scholar 

  38. Ghebremeskel AN, Vemavarapu C, Lodaya M. Use of surfactants as plasticizers in preparing solid dispersions of poorly soluble API: selection of polymer–surfactant combinations using solubility parameters and testing the processability. Int J Pharm. 2007;328:119–29.

    Article  CAS  PubMed  Google Scholar 

  39. Goswami T, Jasti BR, Li X. Estimation of the theoretical pore sizes of the porcine oral mucosa for permeation of hydrophilic permeants. Arch Oral Biol. 2009;54:577–82.

    Article  CAS  PubMed  Google Scholar 

  40. Dhiman MK, Dhiman A, Sawant KK. Transbuccal delivery of 5-fluorouracil: permeation enhancement and pharmacokinetic study. AAPS PharmSciTech. 2009;10:258–65.

    Article  CAS  PubMed  Google Scholar 

  41. Chett DJ, Chen LH, Chien YW. Characterization of captopril sublingual permeation of preferred routes and mechanisms. J Pharm Sci. 2001;90:1868–77.

    Article  Google Scholar 

  42. Nicolazzo JA, Reed BL, Finnin BC. Buccal penetration enhancers—How do they really work? J Control Release. 2005;105:1–15.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGEMENTS

This work was financially supported by China Postdoctoral Science Foundation Project (Special NO. 200902195) and UK-CHINA Joint Laboratory for Therapeutic Textiles.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Deng-Guang Yu or Li-Min Zhu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, DG., Gao, LD., White, K. et al. Multicomponent Amorphous Nanofibers Electrospun from Hot Aqueous Solutions of a Poorly Soluble Drug. Pharm Res 27, 2466–2477 (2010). https://doi.org/10.1007/s11095-010-0239-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-010-0239-y

KEY WORDS

Navigation