Skip to main content
Log in

Nanochannel Technology for Constant Delivery of Chemotherapeutics: Beyond Metronomic Administration

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

The purpose of this study is to demonstrate the long-term, controlled, zero-order release of low- and high-molecular weight chemotherapeutics through nanochannel membranes by exploiting the molecule-to-surface interactions presented by nanoconfinement.

Methods

Silicon membranes were produced with nanochannels of 5, 13 and 20 nm using standardized industrial microfabrication techniques. The study of the diffusion kinetics of interferonα-2b and leuprolide was performed by employing UV diffusion chambers. The released amount in the sink reservoir was monitored by UV absorbance.

Results

Continuous zero-order release was demonstrated for interferonα-2b and leuprolide at release rates of 20 and 100 μg/day, respectively. The release rates exhibited by these membranes were verified to be in ranges suitable for human therapeutic applications.

Conclusions

Our membranes potentially represent a viable nanotechnological approach for the controlled administration of chemotherapeutics intended to improve the therapeutic efficacy of treatment and reduce many of the side effects associated with conventional drug administration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

REFERENCES

  1. American Cancer Society. Cancer facts & figures 2009. Atlanta: American Cancer Society; 2009.

    Google Scholar 

  2. Jemal A, Siegel R, Ward E, Hao Y, Xu J, Murray T, et al. Cancer statistics, 2008. CA Cancer J Clin. 2008;58:71–96.

    Article  PubMed  Google Scholar 

  3. World Breast Cancer Therapeutics Markets. Frost and Sullivan; 2005.

  4. Lyass O, Uziely B, Ben-Yosef R, Tzemach D, Heshing NI, Lotem M, et al. Correlation of toxicity with pharmacokinetics of pegylated liposomal doxorubicin (Doxil) in metastatic breast carcinoma. Cancer 2000;89:1037–47.

    Article  CAS  PubMed  Google Scholar 

  5. Sparreboom A, Scripture CD, Trieu V, Williams PJ, De T, Yang A, et al. Comparative preclinical and clinical pharmacokinetics of a cremophor-free, nanoparticle albumin-bound paclitaxel (ABI-007) and paclitaxel formulated in cremophor (Taxol). Clin Cancer Res. 2005;11:4136–43.

    Article  CAS  PubMed  Google Scholar 

  6. Farokhzad OC, Langer R. Impact of nanotechnology on drug delivery. ACS Nano. 2009;3:16–20.

    Article  CAS  PubMed  Google Scholar 

  7. Ferrari M. Cancer nanotechnology: opportunities and challenges. Nat Rev Cancer. 2005;5:161–71.

    Article  CAS  PubMed  Google Scholar 

  8. Carmo VAS, Ferrari CS, Reis ECO, Ramaldes GA, Pereira MA, De Oliveira MC, et al. Biodistribution study and identification of inflammation sites using 99mTc-labelled stealth pH-sensitive liposomes. Nucl Med Commun. 2008;29:33–8.

    Article  CAS  PubMed  Google Scholar 

  9. Ferrari M. Frontiers in cancer nanomedicine: directing mass transport through biological barriers. Trends Biotechnol. 2010;28:181–8.

    Google Scholar 

  10. Zhang L, Gu FX, Chan JM, Wang AZ, Langer RS, Farokhzad OC. Nanoparticles in medicine: therapeutic applications and developments. Clin Pharmacol Ther. 2008;83:761–9.

    Article  CAS  PubMed  Google Scholar 

  11. Baselt RC. Disposition of toxic drugs and chemicals in man. Biomedical Publications; 2008.

  12. Kerbel RS, Klement G, Pritchard KI, Kamen B. Continuous low-dose anti-angiogenic/metronomic chemotherapy: from the research laboratory into the oncology clinic. Ann Oncol. 2002;13:12.

    Article  CAS  PubMed  Google Scholar 

  13. Kerbel RS, Kamen BA. The anti-angiogenic basis of metronomic chemotherapy. Nat Rev Cancer. 2004;4:423–36.

    Article  CAS  PubMed  Google Scholar 

  14. Hrushesky W. Circadian timing of cancer chemotherapy. Science 1985;228:73–5.

    Article  CAS  PubMed  Google Scholar 

  15. Smolensky MH, Peppas NA. Chronobiology, drug delivery, and chronotherapeutics. Adv Drug Deliv Rev. 2007;59:828–51.

    Article  CAS  PubMed  Google Scholar 

  16. Shah NP, Kasap C, Weier C, Balbas M, Nicoll JM, Bleickardt E, et al. Transient potent BCR-ABL inhibition is sufficient to commit chronic myeloid leukemia cells irreversibly to apoptosis. Cancer Cell. 2008;14:485–93.

    Article  CAS  PubMed  Google Scholar 

  17. Wagner V, Dullaart A, Bock A, Zweck A. The emerging nanomedicine landscape. Nat Biotechnol. 2006;24:1211–7.

    Article  CAS  PubMed  Google Scholar 

  18. Zafar Razzacki S, Thwar PK, Yang M, Ugaz VM, Burns MA. Integrated microsystems for controlled drug delivery. Adv Drug Deliv Rev. 2004;56:185–98.

    Article  CAS  PubMed  Google Scholar 

  19. Nuxoll EE, Siegel RA. BioMEMS devices for drug delivery. IEEE Eng Med Biol Mag. 2009;28:31–9.

    Article  PubMed  Google Scholar 

  20. Voskerician G, Shive MS, Shawgo RS, Recum HV, Anderson JM, Cima MJ, et al. Biocompatibility and biofouling of MEMS drug delivery devices. Biomaterials 2003;24:1959–67.

    Article  CAS  PubMed  Google Scholar 

  21. Ziaie B, Baldi A, Lei M, Gu Y, Siegel RA. Hard and soft micromachining for BioMEMS: review of techniques and examples of applications in microfluidics and drug delivery. Adv Drug Deliv Rev. 2004;56:145–72.

    Article  CAS  PubMed  Google Scholar 

  22. Dash AK, Cudworth II GC. Therapeutic applications of implantable drug delivery systems. J Pharmacol Toxicol Meth. 1998;40:1–12.

    Article  CAS  Google Scholar 

  23. Staples M, Daniel K, Cima M, Langer R. Application of micro- and nano-electromechanical devices to drug delivery. Pharm Res. 2006;23:847–63.

    Article  CAS  PubMed  Google Scholar 

  24. Langer R. New methods of drug delivery. Science 1990;249:1527–33.

    Article  CAS  PubMed  Google Scholar 

  25. Wright JC, Tao Leonard S, Stevenson CL, Beck JC, Chen G, Jao RM, et al. An in vivo/in vitro comparison with a leuprolide osmotic implant for the treatment of prostate cancer. J Control Release. 2001;75:1–10.

    Article  CAS  PubMed  Google Scholar 

  26. Santini Jr JT, Richards AC, Scheidt R, Cima MJ, Langer R. Microchips as controlled drug-delivery devices. Angew Chem Int Ed. 2000;39:2396–407.

    Article  CAS  Google Scholar 

  27. Santini JT, Cima MJ, Langer R. A controlled-release microchip. Nature 1999;397:335–8.

    Article  CAS  PubMed  Google Scholar 

  28. Prescott JH, Lipka S, Baldwin S, Sheppard NF, Maloney JM, Coppeta J, et al. Chronic, programmed polypeptide delivery from an implanted, multireservoir microchip device. Nat Biotechnol. 2006;24:437–8.

    Article  CAS  PubMed  Google Scholar 

  29. Man S, Bocci G, Francia G, Green SK, Jothy S, Hanahan D, et al. Antitumor effects in mice of low-dose (Metronomic) cyclophosphamide administered continuously through the drinking water. Cancer Res. 2002;62:2731–5.

    CAS  PubMed  Google Scholar 

  30. Hanahan D, Bergers G, Bergsland E. Less is more, regularly: metronomic dosing of cytotoxic drugs can target tumor angiogenesis in mice. J Clin Invest. 2000;105:1045–7.

    Article  CAS  PubMed  Google Scholar 

  31. Chu WH, Ferrari M. In: Microrobotics and micromechanical systems, vol. 2593; SPIE: Philadelphia, PA, USA; 1995. p. 9–20.

  32. Desai TA, Chu WH, Tu JK, Beattie GM, Hayek A, Ferrari M. Microfabricated immunoisolating biocapsules. Biotechnol Bioeng. 1998;57:118–20.

    Article  CAS  PubMed  Google Scholar 

  33. Martin F, Walczak R, Boiarski A, Cohen M, West T, Cosentino C, et al. Tailoring width of microfabricated nanochannels to solute size can be used to control diffusion kinetics. J Control Release. 2005;102:123–33.

    Article  CAS  PubMed  Google Scholar 

  34. Cosentino C, Amato F, Walczak R, Boiarski A, Ferrari M. Dynamic model of biomolecular diffusion through two-dimensional nanochannels. J Phys Chem B. 2005;109:7358–64.

    Article  CAS  PubMed  Google Scholar 

  35. Kasemo B. Biocompatibility of titanium implants: surface science aspects. J Prosthet Dent. 1983;49:832–7.

    Article  CAS  PubMed  Google Scholar 

  36. Walczak R, Boiarski A, Cohen M, West T, Melnik K, Shapiro J, et al. Long-term biocompatibility of NanoGATE drug delivery implant. NanoBioTechnology 2005;1:35–42.

    Article  CAS  Google Scholar 

  37. Lesinski GB, Sharma S, Varker KA, Sinha P, Ferrari M, Carson WE. Release of biologically functional interferon-alpha from a nanochannel delivery system. Biomed Microdevices. 2005;7:71–9.

    Article  CAS  PubMed  Google Scholar 

  38. Falkson C, Falkson G, Falkson H. Improved results with the addition of interferon alfa-2b to dacarbazine in the treatment of patients with metastatic malignant melanoma. J Clin Oncol. 1991;9:1403–8.

    CAS  PubMed  Google Scholar 

  39. Rai KR, Davey F, Peterson B, Schiffer C, Silver RT, Ozer H, et al. Recombinant alpha-2b-interferon in therapy of previously untreated hairy cell leukemia: long-term follow-up results of study by Cancer and Leukemia Group B. Leukemia 1995;9:1116–20.

    CAS  PubMed  Google Scholar 

  40. Tamayo L, Ortiz DM, Orozco-Covarrubias L, Duran-McKinster C, Mora MA, Avila E, et al. Therapeutic efficacy of interferon alfa-2b in infants with life-threatening giant hemangiomas. Arch Dermatol. 1997;133:1567–71.

    Article  CAS  PubMed  Google Scholar 

  41. Cersosimo R, Carr D. Prostate cancer: current and evolving strategies. Am J Health Syst Pharm. 1996;53:381–96.

    CAS  PubMed  Google Scholar 

  42. Rao G, Miller D. Clinical applications of hormonal therapy in ovarian cancer. Curr Treat Options Oncol. 2005;6:97–102.

    Article  PubMed  Google Scholar 

  43. Harvey HA, Lipton A, Max DT, Pearlman HG, Diaz-Perches R, de la Garza J. Medical castration produced by the GnRH analogue leuprolide to treat metastatic breast cancer. J Clin Oncol. 1985;3:1068–72.

    CAS  PubMed  Google Scholar 

  44. Grattoni A, Rosa ED, Ferrati S, Wang Z, Gianesini A, Liu X, et al. Analysis of a nanochanneled membrane structure through convective gas flow. J Micromechanics Microengineering. 2009;19:115018.

    Article  Google Scholar 

  45. Wills PR, Georgalis Y. Concentration dependence of the diffusion coefficient of a dimerizing protein. Bovine pancreatic trypsin inhibitor. J Phys Chem. 1981;85:3978–84.

    Article  CAS  Google Scholar 

  46. Fioroni M, Diaz MD, Burger K, Berger S. Solvation phenomena of a tetrapeptide in water/trifluoroethanol and water/ethanol mixtures: a diffusion NMR, intermolecular NOE, and molecular dynamics study. J Am Chem Soc. 2002;124:7737–44.

    Article  CAS  PubMed  Google Scholar 

  47. Burke DC. The purification of interferon. Biochem J. 1961;78:556–63.

    CAS  PubMed  Google Scholar 

  48. Sharma S, Nijdam AJ, Sinha PM, Walczak RJ, Liu X, Cheng MM, et al. Controlled-release microchips. Expert Opin Drug Deliv. 2006;3:379–94.

    Article  CAS  PubMed  Google Scholar 

  49. Danckwerts M, Fassihi A. Implantable controlled release drug delivery systems: a review. Drug Dev Ind Pharm. 1991;17:1465.

    Article  CAS  Google Scholar 

  50. Velez G, Whitcup SM. New developments in sustained release drug delivery for the treatment of intraocular disease. Br J Ophthalmol. 1999;83:1225–9.

    Article  CAS  PubMed  Google Scholar 

  51. Narasimhan B, Langer R. Zero-order release of micro- and macromolecules from polymeric devices: the role of the burst effect. J Control Release. 1997;47:13–20.

    Article  CAS  Google Scholar 

  52. Brizzi M, Berruti A, Ferrero A, Milanesi E, Volante M, Castiglione F, et al. Continuous 5-fluorouracil infusion plus long acting octreotide in advanced well-differentiated neuroendocrine carcinomas. A phase II trial of the Piemonte Oncology Network. BMC Cancer. 2009;9:388.

    Article  PubMed  Google Scholar 

  53. John EM, Miron A, Gong G, Phipps AI, Felberg A, Li FP, et al. Prevalence of pathogenic BRCA1 mutation carriers in 5 US racial/ethnic groups. JAMA 2007;298:2869–76.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGEMENTS

The authors are grateful to Erika Zabre for her support in the experimental analysis and in the editing of the manuscript. This project has been supported with federal funds from NASA (NNJ06HE06A and NNX08AW91G), Department of Defense (DODW81XWH-09-1-0212), as well as funds from State of Texas Emerging Technology Fund, NanoMedical Systems (NMS), and Alliance of NanoHealth (ANH). The authors acknowledge the Texas Advanced Computing Center (TACC) at the University of Texas at Austin for providing HPC resources that have contributed to the research results reported within this paper.

DISCLOSURE

Grattoni A, Fine D, Liu X and Ferrari M hereby disclose a personal financial interest in NanoMedical Systems, Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mauro Ferrari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grattoni, A., Shen, H., Fine, D. et al. Nanochannel Technology for Constant Delivery of Chemotherapeutics: Beyond Metronomic Administration. Pharm Res 28, 292–300 (2011). https://doi.org/10.1007/s11095-010-0195-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-010-0195-6

KEY WORDS

Navigation