Skip to main content
Log in

MDR1 Haplotypes Conferring an Increased Expression of Intestinal CYP3A4 Rather than MDR1 in Female Living-Donor Liver Transplant Patients

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

This study investigated whether haplotypes in the multidrug resistance 1 (MDR1) gene had effects on mRNA expression levels of MDR1 and cytochrome P450 (CYP) 3A4, and on the pharmacokinetics of tacrolimus in living-donor liver transplant (LDLT) patients, considering the gender difference.

Methods

Haplotype analysis of MDR1 with G2677T/A and C3435T was performed in 63 de novo Japanese LDLT patients (17 to 55 years; 44.4% women). The expression levels of MDR1 and CYP3A4 mRNAs in jejunal biopsy specimens were quantified by real-time PCR.

Results

Intestinal CYP3A4 mRNA expression levels (amol/µg total RNA) showed significantly higher values in women carrying the 2677TT-3435TT haplotype (median, 10.7; range, 5.92–15.2) than those with 2677GG-3435CC (3.03; range 1.38–4.68) and 2677GT-3435CT (median, 4.31; range, 0.07–9.42) (P = 0.022), but not in men (P = 0.81). However, MDR1 haplotype did not influence mRNA expression levels of MDR1 nor the concentration/dose ratio [(ng/mL)/(mg/day)] of oral tacrolimus for the postoperative 7 days, irrespective of gender.

Conclusion

MDR1 haplotype may have a minor association with the tacrolimus pharmacokinetics after LDLT, but could be a good predictor of the inter-individual variation of intestinal expression of CYP3A4 in women.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

C/D:

Concentration/dose

CYP:

Cytochrome P450

LDLT:

Living-donor liver transplantation

MDR:

Multidrug resistance

Pgp:

P-glycoprotein

SNP:

Single nucleotide polymorphism

References

  1. F. Thiebaut, T. Tsuruo, H. Hamada, M. M. Gottesman, I. Pastan, and M. C. Willingham. Cellular localization of the multidrug-resistance gene product P-glycoprotein in normal human tissues. Proc Natl Acad Sci USA. 84:7735–8 (1987). doi:10.1073/pnas.84.21.7735.

    Article  PubMed  CAS  Google Scholar 

  2. S. V. Ambudkar, S. Dey, C. A. Hrycyna, M. Ramachandra, I. Pastan, and M. M. Gottesman. Biochemical, cellular, and pharmacological aspects of the multidrug transporter. Annu Rev Pharmacol Toxicol. 39:361–98 (1999). doi:10.1146/annurev.pharmtox.39.1.361.

    Article  PubMed  CAS  Google Scholar 

  3. Y. Kimura, S. Y. Morita, M. Matsuo, and K. Ueda. Mechanism of multidrug recognition by MDR1/ABCB1. Cancer Sci. 98:1303–10 (2007). doi:10.1111/j.1349-7006.2007.00538.x.

    Article  PubMed  CAS  Google Scholar 

  4. S. Hoffmeyer, O. Burk, O. von Richter, H. P. Arnold, J. Brockmoller, A. Johne, I. Cascorbi, T. Gerloff, I. Roots, M. Eichelbaum, and U. Brinkmann. Functional polymorphisms of the human multidrug-resistance gene: multiple sequence variations and correlation of one allele with P-glycoprotein expression and activity in vivo. Proc Natl Acad Sci USA. 97:3473–8 (2000). doi:10.1073/pnas.050585397.

    Article  PubMed  CAS  Google Scholar 

  5. U. Brinkmannand, and M. Eichelbaum. Polymorphisms in the ABC drug transporter gene MDR1. Pharmacogenomics J. 1:59–64 (2001).

    Google Scholar 

  6. C. Marzolini, E. Paus, T. Buclin, and R. B. Kim. Polymorphisms in human MDR1 (P-glycoprotein): recent advances and clinical relevance. Clin Pharmacol Ther. 75:13–33 (2004). doi:10.1016/j.clpt.2003.09.012.

    Article  PubMed  CAS  Google Scholar 

  7. M. Goto, S. Masuda, H. Saito, S. Uemoto, T. Kiuchi, K. Tanaka, and K. Inui. C3435T polymorphism in the MDR1 gene affects the enterocyte expression level of CYP3A4 rather than Pgp in recipients of living-donor liver transplantation. Pharmacogenetics. 12:451–7 (2002). doi:10.1097/00008571-200208000-00005.

    Article  PubMed  CAS  Google Scholar 

  8. J. Lamba, S. Strom, R. Venkataramanan, K. E. Thummel, Y. S. Lin, W. Liu, C. Cheng, V. Lamba, P. B. Watkins, and E. Schuetz. MDR1 genotype is associated with hepatic cytochrome P450 3A4 basal and induction phenotype. Clin Pharmacol Ther. 79:325–38 (2006). doi:10.1016/j.clpt.2005.11.013.

    Article  PubMed  CAS  Google Scholar 

  9. I. A. Macphee, S. Fredericks, T. Tai, P. Syrris, N. D. Carter, A. Johnston, L. Goldberg, and D. W. Holt. Tacrolimus pharmacogenetics: polymorphisms associated with expression of cytochrome p4503A5 and P-glycoprotein correlate with dose requirement. Transplantation. 74:1486–9 (2002). doi:10.1097/00007890-200212150-00002.

    Article  PubMed  CAS  Google Scholar 

  10. H. Zheng, S. Webber, A. Zeevi, E. Schuetz, J. Zhang, P. Bowman, G. Boyle, Y. Law, S. Miller, J. Lamba, and G. J. Burckart. Tacrolimus dosing in pediatric heart transplant patients is related to CYP3A5 and MDR1 gene polymorphisms. Am J Transplant. 3:477–83 (2003). doi:10.1034/j.1600-6143.2003.00077.x.

    Article  PubMed  CAS  Google Scholar 

  11. X. Zhang, Z. H. Liu, J. M. Zheng, Z. H. Chen, Z. Tang, J. S. Chen, and L. S. Li. Influence of CYP3A5 and MDR1 polymorphisms on tacrolimus concentration in the early stage after renal transplantation. Clin Transplant. 19:638–43 (2005). doi:10.1111/j.1399-0012.2005.00370.x.

    Article  PubMed  Google Scholar 

  12. R. B. Kim, B. F. Leake, E. F. Choo, G. K. Dresser, S. V. Kubba, U. I. Schwarz, A. Taylor, H. G. Xie, J. McKinsey, S. Zhou, L. B. Lan, J. D. Schuetz, E. G. Schuetz, and G. R. Wilkinson. Identification of functionally variant MDR1 alleles among European Americans and African Americans. Clin Pharmacol Ther. 70:189–99 (2001). doi:10.1067/mcp.2001.117412.

    Article  PubMed  CAS  Google Scholar 

  13. K. Tang, S. M. Ngoi, P. C. Gwee, J. M. Chua, E. J. Lee, S. S. Chong, and C. G. Lee. Distinct haplotype profiles and strong linkage disequilibrium at the MDR1 multidrug transporter gene locus in three ethnic Asian populations. Pharmacogenetics. 12:437–50 (2002). doi:10.1097/00008571-200208000-00004.

    Article  PubMed  CAS  Google Scholar 

  14. N. N. Salama, Z. Yang, T. Bui, and R. J. Ho. MDR1 haplotypes significantly minimize intracellular uptake and transcellular P-gp substrate transport in recombinant LLC-PK1 cells. J Pharm Sci. 95:2293–308 (2006). doi:10.1002/jps.20717.

    Article  PubMed  CAS  Google Scholar 

  15. A. R. Whitney, M. Diehn, S. J. Popper, A. A. Alizadeh, J. C. Boldrick, D. A. Relman, and P. O. Brown. Individuality and variation in gene expression patterns in human blood. Proc Natl Acad Sci USA. 100:1896–901 (2003). doi:10.1073/pnas.252784499.

    Article  PubMed  CAS  Google Scholar 

  16. R. Wolbold, K. Klein, O. Burk, A. K. Nussler, P. Neuhaus, M. Eichelbaum, M. Schwab, and U. M. Zanger. Sex is a major determinant of CYP3A4 expression in human liver. Hepatology. 38:978–88 (2003).

    PubMed  CAS  Google Scholar 

  17. T. Hashida, S. Masuda, S. Uemoto, H. Saito, K. Tanaka, and K. Inui. Pharmacokinetic and prognostic significance of intestinal MDR1 expression in recipients of living-donor liver transplantation. Clin Pharmacol Ther. 69:308–16 (2001). doi:10.1067/mcp.2001.115142.

    Article  PubMed  CAS  Google Scholar 

  18. S. Masuda, S. Uemoto, T. Hashida, Y. Inomata, K. Tanaka, and K. Inui. Effect of intestinal P-glycoprotein on daily tacrolimus trough level in a living-donor small bowel recipient. Clin Pharmacol Ther. 68:98–103 (2000). doi:10.1067/mcp.2000.107912.

    Article  PubMed  CAS  Google Scholar 

  19. M. Yasuhara, T. Hashida, M. Toraguchi, Y. Hashimoto, M. Kimura, K. Inui, R. Hori, Y. Inomata, K. Tanaka, and Y. Yamaoka. Pharmacokinetics and pharmacodynamics of FK 506 in pediatric patients receiving living-related donor liver transplantations. Transplant Proc. 27:1108–1110 (1995).

    PubMed  CAS  Google Scholar 

  20. J. K. Lamba, Y. S. Lin, E. G. Schuetz, and K. E. Thummel. Genetic contribution to variable human CYP3A-mediated metabolism. Adv Drug Deliv Rev. 54:1271–1294 (2002). doi:10.1016/S0169-409X(02)00066-2.

    Article  PubMed  CAS  Google Scholar 

  21. L. Wojnowski. Genetics of the variable expression of CYP3A in humans. Ther Drug Monit. 26:192–199 (2004). doi:10.1097/00007691-200404000-00019.

    Article  PubMed  CAS  Google Scholar 

  22. T. Hirota, I. Ieiri, H. Takane, S. Maegawa, M. Hosokawa, K. Kobayashi, K. Chiba, E. Nanba, M. Oshimura, T. Sato, S. Higuchi, and K. Otsubo. Allelic expression imbalance of the human CYP3A4 gene and individual phenotypic status. Hum Mol Genet. 13:2959–2969 (2004). doi:10.1093/hmg/ddh313.

    Article  PubMed  CAS  Google Scholar 

  23. C. Kimchi-Sarfaty, J. M. Oh, I. W. Kim, Z. E. Sauna, A. M. Calcagno, S. V. Ambudkar, and M. M. Gottesman. A “silent” polymorphism in the MDR1 gene changes substrate specificity. Science. 315:525–528 (2007). doi:10.1126/science.1135308.

    Article  PubMed  CAS  Google Scholar 

  24. B. Goodwin, M. R. Redinbo, and S. A. Kliewer. Regulation of cyp3a gene transcription by the pregnane x receptor. Annu Rev Pharmacol Toxicol. 42:1–23 (2002). doi:10.1146/annurev.pharmtox.42.111901.111051.

    Article  PubMed  CAS  Google Scholar 

  25. M. N. Jacobs, M. Dickins, and D. F. Lewis. Homology modelling of the nuclear receptors: human oestrogen receptorbeta (hERbeta), the human pregnane-X-receptor (PXR), the Ah receptor (AhR) and the constitutive androstane receptor (CAR) ligand binding domains from the human oestrogen receptor alpha (hERalpha) crystal structure, and the human peroxisome proliferator activated receptor alpha (PPARalpha) ligand binding domain from the human PPARgamma crystal structure. J Steroid Biochem Mol Biol. 84:117–132 (2003). doi:10.1016/S0960-0760(03)00021-9.

    Article  PubMed  CAS  Google Scholar 

  26. J. M. Pascussi, S. Gerbal-Chaloin, L. Drocourt, P. Maurel, and M. J. Vilarem. The expression of CYP2B6, CYP2C9 and CYP3A4 genes: a tangle of networks of nuclear and steroid receptors. Biochim Biophys Acta. 1619:243–253 (2003).

    PubMed  CAS  Google Scholar 

  27. W. Y. Kimand, and L. Z. Benet. P-glycoprotein (P-gp/MDR1)-mediated efflux of sex-steroid hormones and modulation of P-gp expression in vitro. Pharm Res. 21:1284–1293 (2004). doi:10.1023/B:PHAM.0000033017.52484.81.

    Article  Google Scholar 

  28. J. Wang, A. Zeevi, K. McCurry, E. Schuetz, H. Zheng, A. Iacono, K. McDade, D. Zaldonis, S. Webber, R. M. Watanabe, and G. J. Burckart. Impact of ABCB1 (MDR1) haplotypes on tacrolimus dosing in adult lung transplant patients who are CYP3A5 *3/*3 non-expressors. Transpl Immunol. 15:235–240 (2006). doi:10.1016/j.trim.2005.08.001.

    Article  PubMed  CAS  Google Scholar 

  29. D. Anglicheau, C. Verstuyft, P. Laurent-Puig, L. Becquemont, M. H. Schlageter, B. Cassinat, P. Beaune, C. Legendre, and E. Thervet. Association of the multidrug resistance-1 gene single-nucleotide polymorphisms with the tacrolimus dose requirements in renal transplant recipients. J Am Soc Nephrol. 14:1889–1896 (2003). doi:10.1097/01.ASN.0000073901.94759.36.

    Article  PubMed  CAS  Google Scholar 

  30. N. Tsuchiya, S. Satoh, H. Tada, Z. Li, C. Ohyama, K. Sato, T. Suzuki, T. Habuchi, and T. Kato. Influence of CYP3A5 and MDR1 (ABCB1) polymorphisms on the pharmacokinetics of tacrolimus in renal transplant recipients. Transplantation. 78:1182–1187 (2004). doi:10.1097/01.TP.0000137789.58694.B4.

    Article  PubMed  CAS  Google Scholar 

  31. B. Chowbay, H. Li, M. David, Y. B. Cheung, and E. J. Lee. Meta-analysis of the influence of MDR1 C3435T polymorphism on digoxin pharmacokinetics and MDR1 gene expression. Br J Clin Pharmacol. 60:159–171 (2005). doi:10.1111/j.1365-2125.2005.02392.x.

    Article  PubMed  CAS  Google Scholar 

  32. I. Cascorbi. Role of pharmacogenetics of ATP-binding cassette transporters in the pharmacokinetics of drugs. Pharmacol Ther. 112:457–473 (2006). doi:10.1016/j.pharmthera.2006.04.009.

    Article  PubMed  CAS  Google Scholar 

  33. C. Kimchi-Sarfaty, A. H. Marple, S. Shinar, A. M. Kimchi, D. Scavo, M. I. Roma, I. W. Kim, A. Jones, M. Arora, J. Gribar, D. Gurwitz, and M. M. Gottesman. Ethnicity-related polymorphisms and haplotypes in the human ABCB1 gene. Pharmacogenomics. 8:29–39 (2007). doi:10.2217/14622416.8.1.29.

    Article  PubMed  CAS  Google Scholar 

  34. D. L. Kroetz, C. Pauli-Magnus, L. M. Hodges, C. C. Huang, M. Kawamoto, S. J. Johns, D. Stryke, T. E. Ferrin, J. DeYoung, T. Taylor, E. J. Carlson, I. Herskowitz, K. M. Giacomini, and A. G. Clark. Sequence diversity and haplotype structure in the human ABCB1 (MDR1, multidrug resistance transporter) gene. Pharmacogenetics. 13:481–94 (2003). doi:10.1097/00008571-200308000-00006.

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGEMENTS

This work was supported in part by the 21st Century Center of Excellence (COE) Program “Knowledge Information Infrastructure for Genome Science”, and by a grant-in-aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan. K. Hosohata was supported as a Research Assistant by the 21st Century COE program “Knowledge Information Infrastructure for Genome Science”.

Disclosures

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ken-ichi Inui.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hosohata, K., Masuda, S., Yonezawa, A. et al. MDR1 Haplotypes Conferring an Increased Expression of Intestinal CYP3A4 Rather than MDR1 in Female Living-Donor Liver Transplant Patients. Pharm Res 26, 1590–1595 (2009). https://doi.org/10.1007/s11095-009-9867-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-009-9867-5

Key Words

Navigation