Skip to main content
Log in

Synthesis and Evaluation of Pegylated Dendrimeric Nanocarrier for Pulmonary Delivery of Low Molecular Weight Heparin

Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

This study tests the hypothesis that pegylated dendrimeric micelles prolong the half-life of low molecular weight heparin (LMWH) and increase the drug’s pulmonary absorption, thereby efficacious in preventing deep vein thrombosis (DVT) in a rodent model.

Materials and Methods

Pegylated PAMAM dendrimer was synthesized by conjugating G3 PAMAM dendrimer with methyl ester of polyethylene glycol 2000 (PEG-2000). Fourier transform infrared (FTIR), nuclear magnetic resonance (NMR) spectra and thin layer chromatography (TLC) were used to evaluate the identity and purity of pegylated dendrimer. The particle size distributions of the formulations were measured by using a Nicomp Zeta meter, and drug entrapment efficiency was studied by azure A assay. The efficacy of pegylated dendrimers in enhancing pulmonary absorption, prolonging drug half-life, and preventing DVT was studied in a rodent model.

Results

FTIR, NMR and TLC data confirmed that PAMAM dendrimer was conjugated to PEG-2000. The entrapment efficiency of LMWH in PEG–dendrimer micelles was about 40%. Upon encapsulation of LMWH, the particle size of PEG–dendrimer micelles increased from 11.7 to 17.1 nm. LMWH entrapped in PEG–dendrimer produced a significant increase in pulmonary absorption and the relative bioavailability of the formulation was 60.6% compared to subcutaneous LMWH. The half-life of the PEG–dendrimer-based formulation was 11.9 h, which is 2.4-fold greater than the half-life of LMWH in a saline control formulation. When the formulation was administered at 48-h intervals, the efficacy of LMWH encapsulated in pegylated dendrimers in reducing thrombus weight in a rodent model was very similar to that of subcutaneous LMWH administered at 24-h intervals.

Conclusions

Pegylated PAMAM dendrimer could potentially be used as a carrier for pulmonary delivery of LMWH for the long-term management of DVT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

References

  1. K. T. Al-Jamal, C. Ramaswamy, and A. T. Florence. Supramolecular structures from dendrons and dendrimers. Adv Drug Deliv Rev. 57:2238–2270 (2005). doi:10.1016/j.addr.2005.09.015.

    Article  PubMed  CAS  Google Scholar 

  2. A. D’Emanuele, and D. Attwood. Dendrimer–drug interactions. Adv Drug Deliv Rev. 57:2147–2162 (2005). doi:10.1016/j.addr.2005.09.012.

    Article  PubMed  CAS  Google Scholar 

  3. C. Dufes, I. F. Uchegbu, and A. G. Schatzlein. Dendrimers in gene delivery. Adv Drug Deliv Rev. 57:2177–2202 (2005). doi:10.1016/j.addr.2005.09.017.

    Article  PubMed  CAS  Google Scholar 

  4. R. Duncan, and L. Izzo. Dendrimer biocompatibility and toxicity. Adv Drug Deliv Rev. 57:2215–2237 (2005). doi:10.1016/j.addr.2005.09.019.

    Article  PubMed  CAS  Google Scholar 

  5. A. T. Florence, and N. Hussain. Transcytosis of nanoparticle and dendrimer delivery systems: evolving vistas. Adv Drug Deliv Rev. 50:S69–89 (2001). doi:10.1016/S0169-409X(01)00184-3.

    Article  PubMed  CAS  Google Scholar 

  6. K. M. Kitchens, M. E. El-Sayed, and H. Ghandehari. Transepithelial and endothelial transport of poly (amidoamine) dendrimers. Adv Drug Deliv Rev. 57:2163–2176 (2005). doi:10.1016/j.addr.2005.09.013.

    Article  PubMed  CAS  Google Scholar 

  7. H. Kobayashi, and M. W. Brechbiel. Nano-sized MRI contrast agents with dendrimer cores. Adv Drug Deliv Rev. 57:2271–2286 (2005). doi:10.1016/j.addr.2005.09.016.

    Article  PubMed  CAS  Google Scholar 

  8. S. Svenson, and D. A. Tomalia. Dendrimers in biomedical applications—reflections on the field. Adv Drug Deliv Rev. 57:2106–2129 (2005). doi:10.1016/j.addr.2005.09.018.

    Article  PubMed  CAS  Google Scholar 

  9. S. Bai, C. Thomas, A. Rawat, and F. Ahsan. Recent progress in dendrimer-based nanocarriers. Crit Rev Ther Drug Carrier Syst. 23:437–495 (2006).

    PubMed  CAS  Google Scholar 

  10. J. C. Roberts, M. K. Bhalgat, and R. T. Zera. Preliminary biological evaluation of polyamidoamine (PAMAM) Starburst dendrimers. J Biomed Mater Res. 30:53–65 (1996). doi:10.1002/(SICI)1097-4636(199601)30:1<53::AID-JBM8>3.0.CO;2-Q.

    Article  PubMed  CAS  Google Scholar 

  11. S. M. Moghimi, A. C. Hunter, and J. C. Murray. Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol Rev. 53:283–318 (2001).

    PubMed  CAS  Google Scholar 

  12. Y. Qi, G. Zhao, D. Liu, Z. Shriver, M. Sundaram, S. Sengupta, G. Venkataraman, R. Langer, and R. Sasisekharan. Delivery of therapeutic levels of heparin and low-molecular-weight heparin through a pulmonary route. Proc Natl Acad Sci U S A. 101:9867–9872 (2004). doi:10.1073/pnas.0402891101.

    Article  PubMed  CAS  Google Scholar 

  13. T. Yang, J.J. Arnold, and F. Ahsan. Tetradecylmaltoside (TDM) enhances in vitro and in vivo intestinal absorption of enoxaparin, a low molecular weight heparin. J Drug Target. 13:29–38 (2005). doi:10.1080/10611860400020191.

    Article  PubMed  CAS  Google Scholar 

  14. T. Yang, A. Hussain, S. Bai, I. A. Khalil, H. Harashima, and F. Ahsan. Positively charged polyethylenimines enhance nasal absorption of the negatively charged drug, low molecular weight heparin. J Control Release. 115:289–297 (2006). doi:10.1016/j.jconrel.2006.08.015.

    Article  PubMed  CAS  Google Scholar 

  15. T. Yang, F. Mustafa, and F. Ahsan. Alkanoylsucroses in nasal delivery of low molecular weight heparins: in-vivo absorption and reversibility studies in rats. J Pharm Pharmacol. 56:53–60 (2004). doi:10.1211/0022357022377.

    Article  PubMed  CAS  Google Scholar 

  16. T. Yang, F. Mustafa, S. Bai, and F. Ahsan. Pulmonary delivery of low molecular weight heparins. Pharm Res. 21:2009–2016 (2004). doi:10.1023/B:PHAM.0000048191.69098.d6.

    Article  PubMed  CAS  Google Scholar 

  17. S. Bai, C. Thomas, and F. Ahsan. Dendrimers as a carrier for pulmonary delivery of enoxaparin, a low-molecular weight heparin. J Pharm Sci. 96:2090–2106 (2007). doi:10.1002/jps.20849.

    Article  PubMed  CAS  Google Scholar 

  18. H. Yang, J. J. Morris, and S. T. Lopina. Polyethylene glycol-polyamidoamine dendritic micelle as solubility enhancer and the effect of the length of polyethylene glycol arms on the solubility of pyrene in water. J Colloid Interface Sci. 273:148–154 (2004). doi:10.1016/j.jcis.2003.12.023.

    Article  PubMed  CAS  Google Scholar 

  19. C. Kojima, K. Kono, K. Maruyama, and T. Takagishi. Synthesis of polyamidoamine dendrimers having poly(ethylene glycol) grafts and their ability to encapsulate anticancer drugs. Bioconjug Chem. 11:910–917 (2000). doi:10.1021/bc0000583.

    Article  PubMed  CAS  Google Scholar 

  20. D. Bhadra, S. Bhadra, S. Jain, and N. K. Jain. A PEGylated dendritic nanoparticulate carrier of fluorouracil. Int J Pharm. 257:111–124 (2003). doi:10.1016/S0378-5173(03)00132-7.

    Article  PubMed  CAS  Google Scholar 

  21. K. Maruyama, T. Yuda, A. Okamoto, S. Kojima, A. Suginaka, and M. Iwatsuru. Prolonged circulation time in vivo of large unilamellar liposomes composed of distearoyl phosphatidylcholine and cholesterol containing amphipathic poly(ethylene glycol). Biochimica et Biophysica Acta. 1128:44–49 (1992).

    PubMed  CAS  Google Scholar 

  22. D. A. Tomalia, A. M. Naylor, and W. A. Goddard III. Starburst dendrimers: molecular-level control of size, shape, surface chemistry, topology, and flexibility from atoms to macroscopic matter. Angew Chem, Int Ed Engl. 29:138–175 (1990). doi:10.1002/anie.199001381.

    Article  Google Scholar 

  23. J. S. Choi, E. J. Lee, Y. H. Choi, Y. J. Jeong, and J. S. Park. Poly(ethylene glycol)-block-poly(L-lysine) dendrimer: novel linear polymer/dendrimer block copolymer forming a spherical water-soluble polyionic complex with DNA. Bioconjug Chem. 10:62–65 (1999). doi:10.1021/bc9800668.

    Article  PubMed  CAS  Google Scholar 

  24. R. Jevprasesphant, J. Penny, R. Jalal, D. Attwood, N. B. McKeown, and A. D’Emanuele. The influence of surface modification on the cytotoxicity of PAMAM dendrimers. Int J Pharm. 252:263–266 (2003). doi:10.1016/S0378-5173(02)00623-3.

    Article  PubMed  CAS  Google Scholar 

  25. M. Liu, K. Kono, and J. M. Frechet. Water-soluble dendritic unimolecular micelles: their potential as drug delivery agents. J Control Release. 65:121–131 (2000). doi:10.1016/S0168-3659(99)00245-X.

    Article  PubMed  CAS  Google Scholar 

  26. G. Pan, Y. Lemmouchi, E. O. Akala, and O. Bakare. Studies on PEGylated and drug-loaded PAMAM dendrimers. J Bioact Compat Polym. 20:113–128 (2005). doi:10.1177/0883911505049656.

    Article  CAS  Google Scholar 

  27. Y. Haba, C. Kojima, A. Harada, T. Ura, H. Horinaka, and K. Kono. Preparation of poly(ethylene glycol)-modified poly(amido amine) dendrimers encapsulating gold nanoparticles and their heat-generating ability. Langmuir. 23:5243–5246 (2007). doi:10.1021/la0700826.

    Article  PubMed  CAS  Google Scholar 

  28. R. Q. Huang, Y. H. Qu, W. L. Ke, J. H. Zhu, Y. Y. Pei, and C. Jiang. Efficient gene delivery targeted to the brain using a transferrin-conjugated polyethyleneglycol-modified polyamidoamine dendrimer. FASEB J. 21:1117–1125 (2007). doi:10.1096/fj.06-7380com.

    Article  PubMed  CAS  Google Scholar 

  29. T. Ooya, J. Lee, and K. Park. Effects of ethylene glycol-based graft, star-shaped, and dendritic polymers on solubilization and controlled release of paclitaxel. J Control Release. 93:121–127 (2003). doi:10.1016/j.jconrel.2003.07.001.

    Article  PubMed  CAS  Google Scholar 

  30. K. Salartash, M. D. Gonze, A. Leone-Bay, R. Baughman, W. C. Sternbergh 3rd, and S. R. Money. Oral low-molecular weight heparin and delivery agent prevents jugular venous thrombosis in the rat. J Vasc Surg. 30:526–531 (1999). doi:10.1016/S0741-5214(99)70080-7.

    Article  PubMed  CAS  Google Scholar 

  31. M. D. Gonze, K. Salartash, W. C. Sternbergh 3rd, R. A. Baughman, A. Leone-Bay, and S. R. Money. Orally administered unfractionated heparin with carrier agent is therapeutic for deep venous thrombosis. Circulation. 101:2658–2661 (2000).

    PubMed  CAS  Google Scholar 

Download references

Acknowledgement

This study was supported by NIH R15 HL7713302.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fakhrul Ahsan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bai, S., Ahsan, F. Synthesis and Evaluation of Pegylated Dendrimeric Nanocarrier for Pulmonary Delivery of Low Molecular Weight Heparin. Pharm Res 26, 539–548 (2009). https://doi.org/10.1007/s11095-008-9769-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-008-9769-y

KEY WORDS

Navigation