Skip to main content

Advertisement

Log in

Synthesis, Characterization and Biological Evaluation of Metal Complexes with Water-Soluble Macromolecular Dendritic Ligand

  • Published:
Pharmaceutical Chemistry Journal Aims and scope

The development of drug resistant strains of pathogenic fungi despite the availability of a large number of drugs demands for the development of new, more potential drug molecules. Dendrimer-based drug molecules have been comparatively less studied upon recent advancement in this field. In the present work, a new water-soluble dendritic ligand and its copper(II), nickel(II), and cobalt(II) complexes have been synthesized. The ligand, as well as its complexes, were characterized by various physicochemical, analytical, and spectroscopic techniques. On the basis of UV-Vis spectroscopic data, tetragonal geometry was proposed for Cu(II) complex and square planar geometry was established for Co(II) and Ni(II) complexes. The antifungal activities of water-soluble compounds were evaluated using the disk diffusion method, and the minimal inhibitory concentrations (MICs) against Candida albicans ATCC 90028 were determined by the dilution method. The synthesized compounds proved to be fungicidal in comparison to fluconazole, which is fungistatic only; however, these compounds were less active than fluconazole. Hemolysis assays for one of the reported compound showed that it was nontoxic in comparison to fluconazole. Therefore, the proposed compounds can serve as promising leads for the development of new antifungal agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. S1
Fig. S2

Similar content being viewed by others

References

  1. J. Kriengkauykiat, J. I. Ito, and S. S. Dadwal, Clin. Epidemiol., 3, 175 – 191 (2011).

    PubMed  PubMed Central  Google Scholar 

  2. A. Mulu, A. Kassu, B. Anagaw, et. al., BMC Infect. Dis., 13, 82 (2013).

  3. C. Lass-Florl, K. Griff, A. Mayr, et. al., Brit. J. Hematol., 131, 201 – 207 (2005).

  4. M. A. Pfaller and D. J. Diekema, Clin. Microbiol. Rev., 20, 133 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. B. H. Segal and T. Walsh, Am. J. Respir. Crit. Care Med., 173, 707 (2006).

    Article  CAS  PubMed  Google Scholar 

  6. M. C. Anrendrup, K. Fuursted, B. Gahrn-Hansen, et. al., J. Clin. Microbiol., 43, 4434 – 4440 (2005).

  7. D. A. Enoch, H. A. Ludlam, and N. M. Brown, J. Med. Microbiol., 55, 809 – 817 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. M. C. Arendrup, E. Dzajic, R. H. Jensen, et. al., Clin. Microbiol. Infect., 19, 343 – 353 (2003).

  9. M. P. Wille, T. Guinmaraes, G. H. C. Furtado, and A. L. Colombo, Mem. Inst. Oswaldo Cruz, 108, 288 – 292 (2013).

    Article  PubMed Central  Google Scholar 

  10. M. A. Pfaller, D. J. Diekema, D. L. Gibbs, et.al., J. Clin. Microbiol., 55, 1629 – 1637 (2007).

  11. N. C. Karyotakis and E. Anaissie, J. Curr. Opin. Inf. Dis., 7, 658 (1994).

    Article  Google Scholar 

  12. I. A. Casalinuovo, P. Di Francesco, and E. Garaci, Eur. Rev. Med. Pharmacol. Sci. 8, 69 – 77 (2004).

    CAS  PubMed  Google Scholar 

  13. C. Sheng and W. Zhang, Curr. Med. Chem., 18, 733 – 766 (2011).

    Article  CAS  PubMed  Google Scholar 

  14. D. L. Jiang and T. Aida, Nature, 388, 454 – 456 (1997).

    Article  CAS  Google Scholar 

  15. J. W. J. Knapen, A. W. Van der Made, J. C. de Wilde, et. al., Nature, 372, 659 – 663 (1994).

  16. S. A. Ponomarenko, E. A. Eebrov, A. Yu. Bobrovsky, et. al., Liq. Cryst., 21, 1 – 12 (1996).

  17. P. Busson, H. Ihre, and A. Hult, J. Am. Chem. Soc., 120, 9070 – 9071 (1998).

    Article  CAS  Google Scholar 

  18. J. F. G. A. Jansen, E. M. M. de Brabander-Van den Berg, and E. W. Meijer, Science, 266, 1226 – 1229 (1994).

    Article  CAS  PubMed  Google Scholar 

  19. C. J. Hawker and J. M. J. Frechet, J. Chem. Soc. Perkin Trans. 1, 2459 – 2469 (1992).

    Article  Google Scholar 

  20. J. Haensler and F. C. Szoka, Bioconjugate Chem., 4, 372 – 379(1993).

    Article  CAS  Google Scholar 

  21. C. T. Redemann and F. C. Szoka, Bioconjug. Chem., 7, 703 – 714 (1996).

    Article  PubMed  Google Scholar 

  22. E. W. Meijer, W. Paulus, and R. J. Duncan, Control. Release, 65, 133 – 148 (2000).

    Article  Google Scholar 

  23. D. Gamovskii, A. L. Nivorozhkin, and V. I. Mimkin, Coord. Chem. Rev. 126, 1 (1993).

    Article  Google Scholar 

  24. M. Sonmez, J. Polish, Chem. 77, 397 – 402 (2003).

    CAS  Google Scholar 

  25. M. Sonmez and M. Sekerci, Synth. React. Inorg. Met. Org. Chem., 33(10), 1747 – 1761 (2003).

  26. M. Sonmez and M. Sekerci, Synth. React. Inorg. Met. Org. Chem., 34(3), 489 – 502 (2004).

    Article  Google Scholar 

  27. P. A.Wayne, Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts: Approved Standard, Clinical and Laboratory Standards Institute, 3rd edition (2008), p. M27-A3.

  28. A. Ahmad, A. Khan, N. Manzoor, and L. A. Khan, Microb. Pathogen., 48, 35 – 41 (2010).

    Article  CAS  Google Scholar 

  29. A. Chaudhary and R. V. Singh, Indian J. Chem., 43, 2529 (2004).

    Google Scholar 

  30. W. Kemp, Organic Spectroscopy, Macmillan Press Ltd., London (1975).

  31. Ch. Krishna, C. Mohapatra, and K. C. Dash, J. Inorg. Nucl. Chem., 39, 1253 – 1258 (1977).

    Article  Google Scholar 

  32. N. N. Greenwood and A. Earnshaw, Chemistry of the Elements, Pergamon Press, New York (1984).

    Google Scholar 

  33. M. K. Singh, R. Laskar, and A. Das, Indian. J. Chem., 41A, 2282 – 2284 (2002).

    CAS  Google Scholar 

  34. M. K. Singh, R. Laskar, and A. Das, Transit. Met. Chem., 30, 48 – 487 (2005).

    Google Scholar 

  35. A. D. Naik, S. M. Annigeri, U. B. Gangadarmath, et. al., Transit. Met. Chem., 27, 333–336 (2002).

  36. P. P. Singh, V. P. Shukla, and R. Rivest, J. Inorg. Nucl. Chem., 37, 679 (1975).

    Article  CAS  Google Scholar 

  37. N. Naz and M. Z. Iqbal, J. Chem. Soc. Pak., 31(3), 440 (2009).

    CAS  Google Scholar 

  38. Z. H. Chohan, H. Pervez, K. M. Khan, et. al., J. Enzyme Inhib. Med. Chem., 19(1), 85 – 90 (2004).

  39. I. Ali, W. A. Wani, A. Khan, et. al., Microb. Pathogen., 53(2), 66 – 73 (2012).

  40. S. Henkelman, G. Rakhorst, J. Blanton, and W. Van Oeveren, Mater. Sci. Eng. C: Biomim. Supramol. Syst., 29, 1650 – 1654 (2009).

    Article  CAS  Google Scholar 

  41. M. M. Lubran, Clin. Lab. Sci., 19, 114 (1989).

    CAS  Google Scholar 

  42. FDA Guidance for Industry-Nonclinical Studies for the Safety Evaluation of Pharmaceutical Excipients (2005); available online at: http: /www.fda.gov / downloads / drugs / guidanceComplianceRegulatoryInformation / Guidances / ucm079250.pdf

Download references

5. Acknowledgements

The authors are thankful to sophisticated analytical instrumentation facility, Punjab University Chandigarh for providing ESI-MS. Jamia Hamdard University for providing facility of NMR and UGC New Delhi for providing UGC-BSR meritorious research fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Athar Adil Hashmi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, U., Bukhari, M.N., Anayutullah, S. et al. Synthesis, Characterization and Biological Evaluation of Metal Complexes with Water-Soluble Macromolecular Dendritic Ligand. Pharm Chem J 49, 868–877 (2016). https://doi.org/10.1007/s11094-016-1387-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11094-016-1387-0

Keywords

Navigation