Skip to main content
Log in

Atmospheric Plasma Spraying Evolution Since the Sixties Through Modeling, Measurements and Sensors

  • Review Article
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

This paper presents, through examples, the evolutions of atmospheric plasma spraying since the sixties. The drastic improvement of the spray conditions and coatings reproducibility during more than 50 years was linked both to researches in laboratories and developments of spray equipment’s (plasma torches, computerized control panels, robots to spray coatings on complex parts, sensors working in the harsh environment of spray booths…). This evolution is illustrated through the following topics: (1) plasma forming gas thermodynamic and transport properties either at local thermodynamic equilibrium or more recently at two temperatures; (2) evolution of plasma spray torches since the nineties; (3) plasma jet and in-flight particle measurements with laboratory equipment’s and then sensors in spray booths; (4) plasma jets and torches modeling as well as heat and momentum transfer to particles; (5) splats formation and layering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Tucker RC Jr (ed) (2013) Thermal spray technology vol 5A. ASM Int. Handbook

  2. Fauchais P, Heberlein J, Boulos M (2014) Thermal spray thermal spray fundamentals. Springer, Berlin, p 1550

    Book  Google Scholar 

  3. Muehlberger E (1988) Industrial plasma processing technology. In: Proc. 1st plasma technik symp, vol 3. Plasma Technik, Wohlen, pp 105–118

  4. Freslon A (1995) Plasma spraying at controlled temperature and atmosphere. In: Berndt CC, Sampath S (eds) Thermal spray: science and technology. ASM Int., OH, pp 57–63

  5. Ambühl P, Meyer P (1999) Thermal coating technology in controlled atmospheres (ChamProTM). In: Lugscheider E, Kammer PA (eds) Proceedings of the ITSC. DVS, Düsseldorf, pp 291–92

  6. Friis M, Persson C (2003) Control of thermal spray processes by means of process maps and process windows. J Therm Spray Technol 12(1):44–52

    Article  Google Scholar 

  7. Davis JR (ed) (2004) Handbook of thermal spray technology. ASM Int., Materials Park

  8. Smith RW (1991) Plasma processing… the state of the art… and future—from a surface to a materials processing technology, 2nd Plasma-Technik- Symposium vol 1. Plasma-Technik AG, Wolhen, pp 17–38

  9. Dzulko H, Forster G, Landes KD, Zierhut J, Nassenstein K (2005) Plasma torch developments. In; Proc. intern. thermal spray conf., DVS, Basel

  10. Marqués J-L, Forster G, Schein J (2009) Multi-electrode plasma torches: motivation for development and current state-of-the-art. Open Plasma Phys J 2:89–98

    Article  Google Scholar 

  11. Sun X, Heberlein J (2005) Fluid dynamic effects on plasma torch anode erosion. J. Therm Spray Technol 14(1):39–44 (Page 25 of 53 26)

    Article  Google Scholar 

  12. Zhou XJ, Heberlein J (1994) Arc cathode erosion studies. In: Fauchais P (ed) Proc. of plasma symposium on heat and mass transfer under plasma conditions. Begell House Inc. New York, pp 237–243

  13. Killinger A, Gadow R, Mauer G, Guignard A, Vaßen R, Stöver D (2011) Review of new developments in suspension and solution precursor thermal spray processes. J Therm Spray Technol 20(4):680–695

    Article  Google Scholar 

  14. Fauchais P, Joulia A, Goutier S, Chazelas C, Vardelle M, Vardelle A, Rossignol S (2013) Suspension and solution plasma spraying. J Phys D: Appl Phys 46:224015

    Article  CAS  Google Scholar 

  15. Fowler FH, Guggenheim EA (1956) Statistical thermodynamics. University Press, Cambridge

    Google Scholar 

  16. Glouchko VP (1962) Propriétés thermodynamiques des corps purs. Mir, Moscou

  17. JANAF (1971) ‘Thermochemical data’ compiled and calculated by the Dow Chemical Company. Thermal Laboratory, Midland

    Google Scholar 

  18. Gordon S , Mcbride BJ (1994) Computer program for calculation of complex chemical equilibrium compositions and applications’ NASA Report RP-1311. NASA Lewis Research Center, Washington, DC

  19. Barin I, Knacke O (1973–1977) Thermochemical properties of inorganic substances. Springer, Berlin

  20. Fauchais P, Baronnet JM, Bayard S (1975) Problèmes posés par le calcul des fonctions de partition des espèces mono et diatomiques dans un plasma. Rev Int Hautes Temp Réfract 12:221–232

    CAS  Google Scholar 

  21. Fauchais P, Vasseur A, Manson N (1969) Détermination des caractéristiques thermodynamiques des plasmas de mélanges de gaz. Rev Int Hautes Temp Réfract 6:5–20

    CAS  Google Scholar 

  22. Drellishak KS (1963) Partition functions and thermodynamic properties of high temperature gases. PhD thesis, Northwestern University

  23. Capitelli M, Ficocelli E, Molinari E (1969) Equilibrium compositions and thermodynamic properties of mixed plasmas I, He–N2, Ar–N2, Page 26 of 53 and Xe–Ne plasmas at one atmosphere between 5000 K and 35000 K, internal report, Univ. of Bari, Italy

  24. Pateyron B, Elchinger M-F, Delluc G, Fauchais P (1992) Thermodynamic and transport properties of Ar–H2 and Ar–He plasma gases used for spraying at atmospheric pressure. I: properties of the mixtures. Plasma Chem Plasma Process 12(4):421–448

    Article  CAS  Google Scholar 

  25. Pateyron B, Aubreton J, Elchinger MF, Delluc G, Fauchais P (1986) Thermodynamic and transport properties of N2, 02, H2, Ar, He and their mixtures. Internal report, Laboratoire Céramiques Nouvelles URA 320 CNRS, University of Limoges

  26. Boulos MI, Fauchais P, Pfender E (1994) Thermal plasmas, fundamentals and applications. Plenum Press, New York, p 448

    Book  Google Scholar 

  27. Krenek P (2008) Thermophysical properties of H2O–Ar plasmas at temperatures 400–50,000 K and pressure 0.1 MPa. Plasma Chem Plasma Process 28:107–122

    Article  CAS  Google Scholar 

  28. Mostaghimi-Tehrani J, Pfender E (1984) Effects of metallic vapor on the properties of an argon arc plasma. Plasma Chem Plasma Process 4(2):129–139

    Article  CAS  Google Scholar 

  29. Pateyron B, Elchinger MF, Delluc G, Fauchais P (1996) Sound velocity in different reacting thermal plasma systems. Plasma Chem Plasma Process 16(1):39–57

    Article  CAS  Google Scholar 

  30. Chapman S, Cowling T (1952) The mathematical theory of non-uniform gases. Cambridge University Press, New York

    Google Scholar 

  31. Hirschfelder JO, Curtiss CF, Bird RB (1964) Molecular theory of gases and liquids, 2nd edn. Wiley, New York

    Google Scholar 

  32. Butler JN, Brokaw RS (1957) Thermal conductivity of gas mixtures in chemical equilibrium. J Chem Phys 26:1636–1642

    Article  CAS  Google Scholar 

  33. Aubreton J, Elchinger MF, Andre P (2013) Influence of partition function and interaction potential on transport properties of thermal plasmas. Plasma Chem Plasma Process 33:367–399

    Article  CAS  Google Scholar 

  34. Gleizes A, Gonzalez JJ, Freton P (2005) Topical review, thermal plasma modeling. J Phys D Appl Phys 38:R153–R183

    Article  CAS  Google Scholar 

  35. Murphy AB, Arundell CJ (1994) Transport coefficients of argon, nitrogen, oxygen, argon-nitrogen, and argon-oxygen plasmas. Plasma Chem Plasma Process 14(4):451–490

    Article  CAS  Google Scholar 

  36. Devoto RS (1968) Transport coefficients of partially ionized hydrogen. J Plasma Phys 2(4):617–631

    Article  Google Scholar 

  37. Aubreton J, Elchinger MF, Vinson JM (2009) Transport coefficients in water plasma: part I: equilibrium plasma. Plasma Chem Plasma Process 29:149–171

    Article  CAS  Google Scholar 

  38. Murphy AB (2012) Transport coefficients of plasmas in mixtures of nitrogen and hydrogen. Chem Phys 398:64–72

    Article  CAS  Google Scholar 

  39. Murphy AB (2000) Transport coefficients of hydrogen and argon–hydrogen plasmas. Plasma Chem Plasma Process 20(3):279–297

    Article  CAS  Google Scholar 

  40. Pateyron B, Elchinger MF, Delluc G, Fauchais P (1990), Thermodynamic and transport properties of air and air–Cu at atmospheric pressure. Internal report, LMCTS, University of Limoges

  41. Murphy AB, Tanaka M, Yamamoto K, Tashiro S, Sato T, Lowke JJ (2009) Review article, modelling of thermal plasmas for arc welding: the role of the shielding gas properties and of metal vapour. J Phys D: Appl Phys 42:194006

    Article  CAS  Google Scholar 

  42. Gleizes A, Cressault Y, Teulet Ph (2010) Mixing rules for thermal plasma properties in mixtures of argon, air and metallic vapors. Plasma Sour Sci Technol 19:055013

    Article  CAS  Google Scholar 

  43. Cressault Y, Gleizes A (2010) Calculation of diffusion coefficients in air–metal thermal plasmas. J Phys D: Appl Phys 43:434006

    Article  CAS  Google Scholar 

  44. Griem H (1964) Plasma spectroscopy. McGraw-Hill, New York

    Google Scholar 

  45. Griem H (1974) Spectral broadening by plasma. Academic, New York

    Google Scholar 

  46. Cabannes F, Chapelle J (1971) Reactions under plasma conditions chapter 7. In: Spectroscopic plasma diagnostic, vol 1. Wiley, New York

  47. Essoltani A, Proulx P, Boulos MI, Gleizes A (1990) Radiation and self—absorption in argon–iron plasmas at atmospheric-pressure. J Anal At Spectrom 5:543–547

    Article  CAS  Google Scholar 

  48. Essoltani A, Proulx P, Boulos MI, Gleizes A (1994) Effect of the presence of iron vapors on the volumetric emission of Ar/Fe and Ar/Fe/H2 plasmas. Plasma Chem Plasma Process 14:301–315

    Article  CAS  Google Scholar 

  49. Essoltani A, Proulx P, Boulos MI, Gleizes A (1994) Volumetric emission of argon plasmas in the presence of vapors of Fe, Si and Al. Plasma Chem Plasma Process 14:437–450

    Article  CAS  Google Scholar 

  50. Rahmani B (1989) Calcul de l’émission nette du rayonnement des arcs dans SF6 et dans les mélanges SF6–N2, Engineering PhD, Univ. of Toulouse (in French)

  51. Cressault Y, Rouffet ME, Gleizes A, Meillot E (2010) Net emission of Ar–H2–He thermal plasmas at atmospheric pressure. J Phys D Appl Phys 43:335204

    Article  CAS  Google Scholar 

  52. Chen DM, Hsu KC, Pfender E (1981) Two-temperature modeling of an arc plasma reactor. Plasma Chem Plasma Process 1:295–314

    Article  CAS  Google Scholar 

  53. Aubreton J, Elchinger MF, Fauchais P (1998) New method to calculate thermodynamic and transport properties of a multi-temperature plasma: application to N2 plasma. Plasma Chem Plasma Process 18(1):1–27

    Article  CAS  Google Scholar 

  54. André P, Aubreton J, Elchinger MF, Fauchais P, Lefort A (1999) Plasma concentrations out of equilibrium: N2 (kinetic method and mass action law), Ar–CCl4 and Ar–H2CCl4 (mass action law). In: Fauchais P, Amouroux J (eds) The annals of the New York Academy of Sciences, New York, pp 85–94

  55. Rat V, André P, Aubreton J, Elchinger MF, Fauchais P, Lefort A (2002) Two-temperature transport coefficients in argon–hydrogen plasmas—II: inelastic processes and influence of composition. Plasma Chem Plasma Process 22(4):475–493

    Article  CAS  Google Scholar 

  56. Ghorui S, Heberlein JVR, Pfender E (2007) Thermodynamic and transport properties of two-temperature oxygen plasmas. Plasma Chem Plasma Process 27:267–291

    Article  CAS  Google Scholar 

  57. Colombo V, Ghedini E, Sanibondi P (2009) Two-temperature thermodynamic and transport properties of argon–hydrogen and nitrogen–hydrogen plasmas. J Phys D Appl Phys 42:055213

    Article  CAS  Google Scholar 

  58. Ghorui S, Heberlein JVR, Pfender E (2008) Thermodynamic and transport properties of two-temperature nitrogen–oxygen plasma. Plasma Chem Plasma Process 28:553–582

    Article  CAS  Google Scholar 

  59. Meher KC, Tiwari N, Ghorui S (2015) Thermodynamic and transport properties of nitrogen plasma under thermal equilibrium and non-equilibrium conditions. Plasma Chem Plasma Process 35:605–637

    Article  CAS  Google Scholar 

  60. Meher KC, Tiwari N, Ghorui S, Das AK (2014) Multi-component diffusion coefficients in nitrogen plasma under thermal equilibrium and nonequilibrium conditions. Plasma Chem Plasma Process 34:949–974

    Article  CAS  Google Scholar 

  61. Yang A, Liu Y, Zhong L, Wang X, Niu C, Rong M, Han G, Zhang Y, Lu Y, Wu Y (2016) Thermodynamic properties and transport coefficients of CO2–Cu thermal plasmas. Plasma Chem Plasma Process 36:1141–1160

    Article  CAS  Google Scholar 

  62. Fauchais P, Vardelle A (1997) Thermal plasmas. IEEE Trans Plasma Sci 25(6):1258–1280

    Article  CAS  Google Scholar 

  63. Heberlein J (2000) Electrode phenomena in plasma torches. In Fauchais P, Heberlein J, van der Mullen J (eds) Heat and mass transfer under plasma conditions. Annals of New York Academy of Sciences, pp 14–27

  64. Duan Z, Heberlein J (2002) Arc instabilities in a plasma spray torch. J Therm Spray Technol 11(1):44–51

    Article  Google Scholar 

  65. Leblanc L, Moreau C (2001) The long-term stability of plasma spraying. J Therm Spray Technol 11(3):380–386

    Article  Google Scholar 

  66. Zierhut J, Haslbeck P, Landes KD, Muller BGM and Schutz M (1998) TRIPLEX—an innovative three-cathode plasma torch. In: Coddet C (ed) Proc. proc. intern. thermal spray conf. ASM International Materials Park, Nice, pp 1374–1380

  67. Sahoo P (2006) 100HETM plasma spray system. Patent US 20060099440 A1

  68. Oberste-Berghaus J et al (2006) Method and apparatus for fine particle liquid suspension feed for thermal spray system and coatings formed therefrom, Patent US 20060289405 A1 and method and system for producing coatings from liquid feedstock using axial feed, Patent US 20110237421 A1, Licenced to Northwest Mettech Corp

  69. Salpeter EE (1961) Electron density fluctuations in a plasma. Phys Rev 122:1663

    Article  Google Scholar 

  70. Dzierżega K, Mendys A, Pokrzywk B (2014) What can we learn about laser-induced plasmas from Thomson scattering experiments. Spectrochim Acta Part B 98:76–86

    Article  CAS  Google Scholar 

  71. Schein J, Hartz-Behrend K, Kirner S, Kühn-Kauffeldt M, Bachmann B, Siewert E (2015) New methods to look at an old technology: innovations to diagnose thermal plasmas. Plasma Chem Plasma Process 35:437–453

    Article  CAS  Google Scholar 

  72. Fauchais P, Coudert JF, Vardelle M (1989) Diagnostics in thermal plasma processing. In Auciello O, Flamm DL (eds) Plasma diagnostics, vol 1. Academic, pp 349–446

  73. Fauchais P et al (1992) Diagnostics of thermal spraying plasma jets. J Therm Spray Technol 1(2):117–128

    Article  CAS  Google Scholar 

  74. Chen WLT, Heberlein J, Pfender E (1994) Diagnostics of a thermal plasma jet by optical emission spectroscopy and enthalpy probe measurements. Plasma Chem Plasma Process 14(3):317–322

    Article  CAS  Google Scholar 

  75. Baronnet JM (1971) Comparative study of measurement methods to determine rotational and vibrational temperatures of N2 molecule in nitrogen plasma produced by a DC arc, Univ. of Poitiers April 30 (in French)

  76. Vardelle M, Trassy C, Vardelle A, Fauchais P (1991) Experimental investigation of powder vaporization in thermal plasma jets. Plasma Chem Plasma Process 11(2):185–201

    Article  CAS  Google Scholar 

  77. Eckbreth AC, Anderson TJ (1985) Dual broadband CARS for simultaneous multiple species measurements. Appl Opt 24:2731–2736

    Article  CAS  Google Scholar 

  78. Grey J, Jacobs PF, Sherman MP (1962) Calorimetric probe for the measurement of extremely high temperatures. Rev Sci Instrum 33(7):738–741

    Article  Google Scholar 

  79. Brossa M, Pfender E (1988) Probe measurements in thermal plasma jets. Plasma Chem Plasma Process 8(1):75–90

    Article  CAS  Google Scholar 

  80. Capetti A, Pfender E (1989) Probe measurements in argon plasma jets operated in ambient argon. Plasma Chem Plasma Process 9(2):329–341

    Article  CAS  Google Scholar 

  81. Mauer G, Vaßen R, Stöver D (2011) Plasma and particle temperature measurements in thermal spray: approaches and applications. J Therm Spray Technol 20(3):391–406

    Article  Google Scholar 

  82. Coudert JF, Planche MP, Fauchais P (1995) Velocity measurement of DC plasma based on arc root fluctuations. Plasma Chem Plasma Process 15(1):47–70

    Article  CAS  Google Scholar 

  83. Planche MP, Coudert JF, Fauchais P (1998) Velocity measurements for arc jets produced by a DC plasma spray torch. Plasma Chem Plasma Process 18(2):263–283

    Article  CAS  Google Scholar 

  84. Landes K (2006) Diagnostics in plasma spraying techniques. Surf Coat Technol 201:1948–1954

    Article  CAS  Google Scholar 

  85. Schein J, Richter M, Landes KD, Forster G, Zierhut J, Dzulko M (2008) Tomographic investigation of plasma jets produced by multielectrode plasma torches. J Therm Spray Technol 17(3):338–343

    Article  CAS  Google Scholar 

  86. Malmberg S, Heberlein J (1993) Effect of plasma spray operating conditions on plasma jet characteristics and coating properties. J Therm Spray Technol 2(4):339–344

    Article  CAS  Google Scholar 

  87. Fauchais P, Vardelle A (2000) Heat, mass and momentum transfer in coating formation by plasma spraying. Int J Therm Sci 39:852–870

    Article  CAS  Google Scholar 

  88. Pfender E, Chen WLT, Spores R (1990) A new look at the thermal and gas dynamic characteristics of a plasma jet. In: Berndt CC (ed) Proc. proceedings of the 3rd national thermal spray conference. ASM International, Long Beach, pp 1–10

  89. Fincke JR, Haggard DC, Swank WD (2001) Particle temperature measurement in the thermal spray process. J Therm Spray Technol 10(2):255–266

    Article  Google Scholar 

  90. Wang P, Yu SCM, Ng HW (2007) Correlation of plasma sprayed coating deposition efficiency with volume flux measurements by phase doppler anemometry (PDA). Plasma Chem Plasma Process 27:311–336

    Article  CAS  Google Scholar 

  91. Moreau C, Gougeon P, Lamontagne M, Lacasse V, VaudreuilG , Cielo P (1994) On-line control of the plasma spraying process by monitoring the temperature, velocity and trajectory of in-flight particles. In: Berndt CC, Sampath S (ed) Thermal spray industrial applications. ASM International, Materials Park, pp 431–437

  92. Fauchais P, Vardelle M (2010) Sensors in spray processes. J Therm Spray Technol 19(4):668–694

    Article  CAS  Google Scholar 

  93. Renouard-Vallet G (2004) Elaboration by plasma spraying of dense and thin (a few tens of micro meters) yttria stabilized zirconia electrolytes for SOFCs. PhD thesis, University of Limoges France, Feb. 8 (in French)

  94. Mauer G, Vaßen R, Stöver D (2007) Comparison and applications of DPV-2000 and accuraspray-g3 diagnostic systems. J Therm Spray Technol 16(3):414–424

    Article  CAS  Google Scholar 

  95. Fauchais P (2004) Understanding plasma spraying. J Phys D Appl Phys 37:86–108

    Article  CAS  Google Scholar 

  96. Vardelle A, Vardelle M, Fauchais P (1982) Influence of velocity and surface temperature of alumina particles on the properties of plasma sprayed coatings. Plasma Chem Plasma Process 2(3):255–291

    Article  CAS  Google Scholar 

  97. Vardelle M, Vardelle A, Fauchais P, Li K-I, Dussoubs B, Themelis NJ (2001) Controlling particle injection in plasma spraying. J Therm Spray Technol 10(2):267–284

    Article  CAS  Google Scholar 

  98. Pfender E (1988) Fundamental studies associated with the plasma spray process. Surf Coat Technol 34:1–14

    Article  CAS  Google Scholar 

  99. McKelliget J, Szekely J, Vardelle M, Fauchais P (1982) Temperature and velocity fields in a gas stream exiting a plasma torch, a mathematical model and its experimental verification. Plasma Chem Plasma Process 2(3):317–332

    Article  CAS  Google Scholar 

  100. Legros E (2003) Contribution to 3D modeling of the plasma spray process and application to a two torches to produce a liquid film of alumina (in French), PhD thesis Nb. 55-2003, Univ. of Limoges

  101. Pfender E, Fincke J, Spores R (1991) Entrainment of cold gas into thermal plasma jets. Plasma Chem Plasma Process 11(4):529–543

    Article  CAS  Google Scholar 

  102. Pfender E (1994) Plasma jet behavior and modeling associated with the plasma spray process. Thin Solid Films 238:228–241

    Article  CAS  Google Scholar 

  103. Roumilhac P, Coudert J-F, Fauchais P (1990) Influence of the arc chamber design and the surrounding atmosphere on the characteristics and temperature distribution of Ar–H2 and Ar–He spraying plasma jets. In: Apelian D, Szekely J (eds) Plasma processing and synthesis of materials, vol 190. MRS, Pittsburgh, pp 227–333

    Google Scholar 

  104. Huang PC, Heberlein J, Pfender E (1995) A two-fluid model of turbulence for a thermal plasma jet. Plasma Chem Plasma Process 15(1):25–46

    Article  CAS  Google Scholar 

  105. Trelles JP, Pfender E, Heberlein JVR (2006) Multiscale finite element modeling of arc dynamics in a DC plasma torch. Plasma Chem Plasma Process 26:557–575

    Article  CAS  Google Scholar 

  106. Moreau E, Chazelas C, Mariaux G, Vardelle A (2006) Modeling the restrike mode operation of a DC plasma spray torch. J Therm Spray Technol 15(4):524–530

    Article  CAS  Google Scholar 

  107. Trelles JP, Pfender E, Heberlein JVR (2007) Modeling of the arc reattachment process in plasma torches. J Phys D Appl Phys 40(2007):5635–5648

    Article  CAS  Google Scholar 

  108. Huang R, Fukanuma H, Uesugi Y, Tanaka Y (2012) Simulation of arc root fluctuation in a DC non-transferred plasma torch with three dimensional modeling. J Therm Spray Technol 21(3–4):636–643

    Article  Google Scholar 

  109. He-Ping Li, Pfender E (2007) Three dimensional modeling of the plasma spray process. J Therm Spray Technol 16(2):245–260

    Article  Google Scholar 

  110. Trelles JP, Chazelas C, Vardelle A, Heberlein JVR (2009) Arc plasma torch modeling. J Therm Spray Technol 18(5–6):728–752

    Article  Google Scholar 

  111. Selvan B, Ramachandran K (2009) Comparisons between two different three-dimensional arc plasma torch simulations. J Therm Spray Technol 18(5–6):846–857

    Article  CAS  Google Scholar 

  112. Alaya M, Chazelas C, Vardelle A (2016) Parametric study of plasma torch operation using a MHD model coupling the arc and electrodes. J Therm Spray Technol 25(1–2):36–43

    Article  CAS  Google Scholar 

  113. Chyou YP, Pfender E (1989) Modeling of plasma jets with superimposed vortex flow. Plasma Chem Plasma Process 9(2):291–328

    Article  Google Scholar 

  114. Lapierre D, Kearney RJ, Vardelle M, Vardelle A, Fauchais P (1994) Effect of a substrate on the temperature distribution in an argon–hydrogen thermal plasma jet. Plasma Chem Plasma Process 14(4):407–423

    Article  CAS  Google Scholar 

  115. Kang CW, Ng HW, Yu SCM (2006) Comparative study of plasma spray flow fields and particle behavior near to flat inclined substrates. Plasma Chem Plasma Process 26:149–175

    Article  CAS  Google Scholar 

  116. Ba T, Kang CW, Ng HW (2009) Numerical study of the plasma flow field and particle in-flight behavior with the obstruction of a curved substrate. J Therm Spray Technol 18(5–6):858–874

    Article  CAS  Google Scholar 

  117. Rahmane M, Soucy G, Boulos MI, Henne R (1998) Fluid dynamic study of direct current plasma jets for plasma spraying applications. J Therm Spray Technol 7(3):349–356

    Article  CAS  Google Scholar 

  118. Jankovic M, Mostaghimi J, Pershin V (2000) Design of a new nozzle for direct current plasma guns with improved spraying parameters. J Therm Spray Technol 9(1):114–120

    Article  Google Scholar 

  119. Gleizes A (2015) Perspectives on thermal plasma modeling. Plasma Chem Plasma Process 35:455–469

    Article  CAS  Google Scholar 

  120. Bobzin K, Öte M (2016) Modeling multi-arc spraying systems. J Therm Spray Technol 25(5):920–932

    Article  Google Scholar 

  121. Xi Chen, Pfender E (1982) Heat transfer to a single particle exposed to a thermal plasma. Plasma Chem Plasma Process 2(2):185–212

    Article  Google Scholar 

  122. Pfender E, Lee YC (1985) Particle dynamics and particle heat and mass transfer in thermal plasmas. Part I. The motion of a single particle without thermal effects. Plasma Chem Plasma Process 5(3):211–237

    Article  CAS  Google Scholar 

  123. Lee YC, Chyou YP, Pfender E (1985) Particle dynamics and particle heat and mass transfer in thermal plasmas. Part II. Particle heat and mass transfer in thermal plasmas. Plasma Chem Plasma Process 5(4):391–414

    Article  Google Scholar 

  124. Chen X, Chyou YP, Lee YC, Pfender E (1985) Heat transfer to a particle under plasma conditions with vapor contamination from the particle. Plasma Chem Plasma Process 5(2):119–141

    Article  CAS  Google Scholar 

  125. Pfender E (1989) Particle behavior in thermal plasmas I. Plasma Chem Plasma Process 9(1):167S–194S

    Article  CAS  Google Scholar 

  126. Chyou YP, Pfender E (1989) Behavior of particulates in thermal plasma flows. Plasma Chem Plasma Process 9(1):45–71

    Article  Google Scholar 

  127. Boulos MI, Fauchais P, Vardelle A, Pfender E (1993) Fundamentals of plasma particle momentum and heat transfer. In: Suryanarayanan R (ed) Plasma spraying theory and applications. World Scientific, Singapore

  128. Lee YC, Chyou YP, Pfender E (1997) Particle dynamics and particle heat and mass transfer in thermal plasmas. Part III. Thermal plasma jet reactors and multi-particle injection. Plasma Chem Plasma Process 7(1):1–27

    Article  Google Scholar 

  129. Pfender E, Chang CH (1998) Plasma spray jets and plasmaparticulate interaction: modeling and experiments. In Coddet C (ed) Thermal spray: meeting the challenges of the 21st century, vol 1. ASM Int. Materials Park, pp 315–321

  130. Clift R, Grace JR, Weber JE (1978) Bubbles, drops and particles. Academic Press, New York

    Google Scholar 

  131. White FM (1974) Viscous fluid flow. McGraw Hill, New York

    Google Scholar 

  132. Rudinger G (1980) Fundamentals of gas-solid particle flow. Elsevier, Amsterdam

    Google Scholar 

  133. Vardelle M, Vardelle A, Fauchais P, Boulos MI (1983) Plasma-particle momentum and heat transfer: modeling and measurements. AlChE J 9(2):236–243

    Article  Google Scholar 

  134. Lewis JW, Gauvin WH (1973) Motion of particles entrained in a plasma jet. AIChE J 19(6):982–990

    Article  CAS  Google Scholar 

  135. Chen X, Pfender E (1983) Behavior of small particles in a thermal plasma flow. Plasma Chem Plasma Process 3(3):351–366

    Article  CAS  Google Scholar 

  136. Vardelle A, Themelis NJ, Dussoubs B, Vardelle M, Fauchais P (1997) Transport phenomena in thermal plasmas. J High Temp Mater Process 1(3):295–317

    Article  CAS  Google Scholar 

  137. Ganser GH (1993) A rational approach to drag prediction of spherical and nonspherical particles. Powder Technol 77:143–152

    Article  CAS  Google Scholar 

  138. Bisson JF, Moreau C (2003) Effect of plasma fluctuations on inflight particle parameters. J Therm Spray Technol 12(2):38–43

    Article  CAS  Google Scholar 

  139. Vardelle A (1988) Numerical study of heat, momentum and mass transfers between an arc plasma at atmospheric pressure and solid particles, Thesis of doctorate, Univ. of Limoges, July (1988)

  140. Fizdon JK (1979) Melting of powder grains in a plasma flame Int. J Heat Mass Transf 22:749–761

    Article  Google Scholar 

  141. Sayegh NN, Gauvin WH (1979) Analysis of variable property heat transfer to a single sphere in high temperature surrounding. AIChE J 25:522–534

    Article  CAS  Google Scholar 

  142. Bourdin E, Fauchais P, Boulos MI (1983) Transient heat conduction under plasma conditions. Int J Heat Mass Transf 26:567–582

    Article  CAS  Google Scholar 

  143. Fizdon JK (1979) Melting of powder grains in a plasma flame. Int J Heat Mass Transf 22:749–761

    Article  Google Scholar 

  144. Dallaire S (1982) Influence of temperature on the bonding mechanism of plasmasprayed coatings. Thin Solid Films 95:237–241

    Article  CAS  Google Scholar 

  145. Lee YC, Hsu C, Pfender E (1981) Modelling of particle injection into a DC plasma jet. In: 5th international symposium on plasma chemistry, vol 2, Edinburgh, pp 795–801

  146. Chen XI, Pfender E (1982) Unsteady heating and radiation effects of small particles in a thermal plasma. Plasma Chem Plasma Process 2:293–316

    Article  CAS  Google Scholar 

  147. Fauchais P, Montavon G, Bertrand G (2010) From powders to thermally sprayed coatings. J Therm Spray Technol 19(1–2):56–80

    Article  CAS  Google Scholar 

  148. Hurevich V, Smurnov I, Pawlowski L (2002) Theoretical study of the powder behavior of porous particles in a flame during plasma spraying. Surf Coat Technol 151–152:370–376

    Article  Google Scholar 

  149. Chen X, Pfender E (1983) Effect of the Knudsen number on heat transfer to a particle immersed into a thermal plasma. Plasma Chem Plasma Process 3:113–397

    CAS  Google Scholar 

  150. Essoltani A, Proulx P, Boulos MI, Gleizes A (1994) Effect of the presence of iron vapors on the volumetric emission of Ar/Fe and Ar/Fe/H2 plasmas. Plasma Chem Plasma Process 14(3):301–315

    Article  CAS  Google Scholar 

  151. Neiser RA, Smith MF, Dykhuisen RC (1998) Oxidation in wire HVOF-sprayed steel. J Therm Spray Technol 7(4):537–545

    Article  CAS  Google Scholar 

  152. Espié G, Fauchais P, Hannoyer B, Labbe JC, Vardelle A (1999) Effect of metal particles oxidation during the APS on the wettability. In: Fauchais P, Van der Mullen J, Heberlein J (eds) Heat and mass transfer under plasma condition, in Annals of NY Academy of Sciences, vol 891, pp. 143–151

  153. Seyed AA, Denoirjean A, Denoirjean P, Labbe JC, Fauchais P (2005) In-flight oxidation of stainless steel in plasma spraying. J Thermal Spray Technol 14(1):124–177

    Google Scholar 

  154. Proulx P, Mostaghimi J, Boulos MI (1987) Heating of powders in an RF inductively coupled plasma under dense loading conditions. Plasma Chem Plasma Process 7(1):29–52

    Article  CAS  Google Scholar 

  155. Vincenzi L, Suzuki S, Outcalt D, Heberlein J (2010) Controlling spray torch fluid dynamics—effect on spray particle and coating characteristics. J Therm Spray Technol 19(4):713–722

    Article  CAS  Google Scholar 

  156. Fauchais P, Fukumoto M, Vardelle A, Vardelle M (2004) Knowledge concerning splat formation: an invited review. J Therm Spray Technol 13(3):337–360

    Article  CAS  Google Scholar 

  157. Chandra S, Fauchais P (2009) Formation of solid splats during thermal spray deposition. J Therm Spray Technol 18(2):148–180

    Article  CAS  Google Scholar 

  158. Shinoda K et al (2007) High-speed thermal imaging of yttria-stabilized zirconia droplet impinging on substrate in plasma spraying. Appl Phys Lett 90:194103

    Article  CAS  Google Scholar 

  159. McDonald A, Lamontagne M, Chandra S, Moreau C (2006) Photographing impact of plasma sprayed particles on metal substrates. J Therm Spray Technol 15(4):708–716

    Article  CAS  Google Scholar 

  160. Gifford DJ, Pollard L, Wuest G, Fletcher RC (2003) Thermal spray booth design guidelines. In: Prepared by the ASM-TSS safety committee. ASM Int. Materials Park, p 47

  161. Goutier S, Vardelle M, Labbe JC, Fauchais P (2011) Flattening and cooling of millimeter- and micrometer-sized alumina drops. J Therm Spray Technol 20(1–2):59–67

    Article  CAS  Google Scholar 

  162. Goutier S, Vardelle M, Fauchais P (2013) Comparison between metallic and ceramic splats: influence of viscosity and kinetic energy on the particle flattening. Surf Coat Technol 235:657–668

    Article  CAS  Google Scholar 

  163. Fauchais P, Vardelle M, Goutier S (2016) Latest researches advances of plasma spraying: from splat to coating formation. J Therm Spray Technol 25(6):1087–1107

    Article  CAS  Google Scholar 

  164. Bahbou MF, Nylén P (2007) On-line measurement of plasma-sprayed Ni-particles during impact on a Ti-surface: influence of surface oxidation. J Therm Spray Technol 16(4):506–511

    Article  CAS  Google Scholar 

  165. Mehdizadeh NZ, Chandra S, Mostaghimi J (2002) Effect of substrate temperature and roughness on coating formation. In: Lugscheider E (ed) Proc. ITSC 2002. DVS, Düsseldorf, pp 830–837

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Vardelle.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fauchais, P., Vardelle, M. & Goutier, S. Atmospheric Plasma Spraying Evolution Since the Sixties Through Modeling, Measurements and Sensors. Plasma Chem Plasma Process 37, 601–626 (2017). https://doi.org/10.1007/s11090-017-9802-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-017-9802-1

Keywords

Navigation