Skip to main content
Log in

Steam Torch Plasma Modelling

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

Numerical modelling of physical properties and processes in an electric arc stabilized by a water vortex (steam torch) has been summarized in this review paper. One-fluid MHD equations are numerically solved for an axisymmetric thermal plasma flow inside a discharge chamber of the steam plasma torch. The steady state solution results are discussed for the range of currents 300–600 A with relatively low steam flow rate of about 0.3 g s−1. The maximum obtained velocities and temperatures—8500 m s−1, 26,300 K, are reported at the centre of the nozzle exit for 600 A. The evaporation of water, i.e. mass flow rate of steam, was predicted from a comparison between the present simulation and experiments. The generated plasma is mildly compressible (M < 0.7) with the inertial forces overwhelming the magnetic, viscous, centrifugal and Coriolis forces with the factor of 103. Our calculations showed that the most significant processes determining properties of the arc are the balance of the Joule heat with radiation and radial conduction losses from the arc. Rotation of plasma column due to the tangential velocity component has a negligible effect on the overall arc performance, however, the rotation of water induces fluctuations in the arc and in the plasma jet with characteristic frequency which is related to the frequency of rotation of water. Reabsorption of radiation occurs at the radial position higher than 2.5 mm from the arc axis. The amount of reabsorbed radiation is between 17 and 28%. LTE conditions are satisfied in the arc column with the 2 mm radius. Comparison between the present simulations and experiments shows good agreement with the current–voltage characteristics, radial velocity and temperature profiles, as well as with the other related numerical simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

(courtesy of Dr. Hrabovský)

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

(courtesy of Dr. Hrabovský)

Fig. 21

(courtesy of Dr. Hrabovský)

Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29

Similar content being viewed by others

References

  1. Gerdien H, Lotz A (1922) Wiss Veroffentlichungen Siemenswerk 2:489

    CAS  Google Scholar 

  2. Gerdien H, Lotz A (1923) Z Tech Phys 4:157

    Google Scholar 

  3. Maecker H (1951) Z Phys 129:108–122

    Article  CAS  Google Scholar 

  4. Burnhorn F, Maecker H (1951) Z Phys 129:369–376

    Article  Google Scholar 

  5. Larentz RW (1951) Z Phys 129:343–364

    Article  Google Scholar 

  6. Weiss R (1954) Z Phys 138:170–182

    Article  Google Scholar 

  7. Burnhorn F, Maecker H, Peters T (1951) Z Phys 131:28–40

    Article  Google Scholar 

  8. Hrabovský M, Konrád M, Kopecký V, Sember V (1997) IEEE Trans Plasma Sci 25:833–839

    Article  Google Scholar 

  9. Hrabovský M, Kopecký V, Sember V (1994) Heat and mass transfer under plasma conditions. Begell House, New York, pp 91–98

    Google Scholar 

  10. Sember V (1998) CSc. PhD thesis, Academy of Sciences of the Czech Republic, Praha

  11. Hrabovský M, Konrád M, Kopecký V (1994) Heat and mass transfer under plasma conditions. Begell House, New York, pp 61–67

    Google Scholar 

  12. Chráska P, Hrabovský M (1992) In: Berndt CC (ed) International Thermal Spray Conference, Orlando, FL, May 28–June 5, ASM International, Materials Park, OH, USA, pp 81–85

  13. Gross B, Grycz B, Miklossy K (1968) Plasma technology. Iliffe, London

    Google Scholar 

  14. Chráska T, Neufuss K, Dubský J, Ctibor P, Klementová M (2008) J Therm Spray Technol 17:872–877

    Article  Google Scholar 

  15. Chráska T, Hostomský J, Klementová M, Dubský J (2009) J Eur Ceram Soc 29:3159–3165

    Article  Google Scholar 

  16. Ctibor P, Ageorges H, Sedláček J, Čtvrtlík R (2010) Ceram Int 36:2155–2162

    Article  CAS  Google Scholar 

  17. Štengl V, Ageorges H, Ctibor P, Murafa N (2009) Photochem Photobiol Sci 8:733–738

    Article  Google Scholar 

  18. Van Oost G, Hrabovský M, Kopecký V, Konrád M, Hlína M, Kavka T, Chumak O, Beeckman E, Verstraeten J (2006) Vacuum 80:1132–1137

    Article  Google Scholar 

  19. Van Oost G, Hrabovský M, Kopecký V, Konrád M, Hlína M, Kavka T (2009) Vacuum 83:209–212

    Article  Google Scholar 

  20. Van Oost G, Hrabovsky M, Khvedchyn I, Sauchyn V, Shvarkov D (2013) Vacuum 88:165–168

    Article  Google Scholar 

  21. Lafon Ch, Girold Ch, Lemort F, Baronnet JM (2003) In: The 1st European Hydrogen Energy Conference, EHEC 2003, Grenoble, 2–5 September 2003, CP1/135

  22. Jeništa J (1999) J Phys D Appl Phys 32:2763–2776

    Article  Google Scholar 

  23. Jeništa J (1999) J Phys D Appl Phys 32:2777–2784

    Article  Google Scholar 

  24. Gonzalez JJ, Jeništa J (1999) In: Hrabovský M, Konrád M, Kopecký V (eds) Proceedings of 14th international symposium plasma chemistry, LOC of the 14th ISPC, pp 355–360

  25. Jeništa J (2003) J Phys D Appl Phys 36:2995–3006

    Article  Google Scholar 

  26. Jeništa J (2003) J High Temp Mater Process 7:11–16

    Article  Google Scholar 

  27. Jeništa J (2000) Czech J Phys 50(Suppl. S3):281–284

    Article  Google Scholar 

  28. Jeništa J, Bartlová M, Aubrecht V (2004) J High Temp Mater Process 8:195–206

    Article  Google Scholar 

  29. Jeništa J, Bartlová M, Aubrecht V (2006) Czech J Phys 56(Suppl. B):B1224–B1230

    Article  Google Scholar 

  30. Jeništa J, Bartlová M, Aubrecht V (2007) In: Complex Systems, AIP Conference Proceedings 982:554–560

  31. Matas R (2001) In: Fluent 2001—7th User’s Conference, Třešt´, Sept. 19–1, 2001, pp 67–70 (in Czech)

  32. Kotalík P (1998) In: Badalec J, Stockel J, Šunka P, Tendler M (eds) Proceedings of 25th international congress on plasma physics, European Physical Society, pp 2710–2713

  33. Kotalík P (1999) PhD thesis, No. 4510, Central library of MFF UK, Centre for scientific informations, Praha

  34. Kotalík P (1999) In: Hrabovský M, Konrád M, Kopecký V (eds) 14th International symposium on plasma chemistry (ISPC 14), LOC of the 14th ISPC, pp 397–402

  35. Kotalík P (2006) J Phys D Appl Phys 39:2522–2533

    Article  Google Scholar 

  36. Kotalík P (1993) Czech J Phys B 43:1165–1171

    Article  Google Scholar 

  37. Kotalík P (1996) Czech J Phys B 46:793–801

    Article  Google Scholar 

  38. Chau SW, Lub SY, Wang PJ (2011) Comput Phys Commun 182:152–154

    Article  CAS  Google Scholar 

  39. Chau SW, Hsu KL (2011) Comput Fluids 45:109–115

    Article  Google Scholar 

  40. Chau SW, Tai CM, Chen SH (2014) IEEE Trans Plasma Sci 42:3797–3808

    Article  CAS  Google Scholar 

  41. Křenek P, Hrabovský M (1993) In: Harry J (ed) Proceedings of 11th international symposium on plasma chemistry (ISPC-11), IOC of the 11th ISPC, pp 315–320

  42. Gleizes A, Gonzalez JJ, Riad H (1995) In: Heberlein JV, Ernie DW, Roberts JT (eds) Proceedings of 12th international symposium on plasma chemistry (ISPC 12), IOC of the 12th ISPC, pp 1731–1736

  43. Sember V (1994) Heat and mass transfer under plasma conditions. Begell House, New York, pp 143–149

    Google Scholar 

  44. Patanakar SV (1980) Numerical heat transfer and fluid flow. McGraw-Hill, New York

    Google Scholar 

  45. Hrabovský M, Konrád M, Kopecký V, Sember V (1995) In: Heberlein JV, Ernie DW, Roberts JT (eds) Proceedings of 12th international sympodium on plasma chemistry (ISPC 12), IOC of the 12th ISPC, pp 1627–1632

  46. Jeništa J (2000) Czech J Phys 50(Suppl. S3):281–284

    Article  Google Scholar 

  47. Jeništa J, Kopecký V, Hrabovský M (1999) In: Fauchais P et al (eds) Heat and Mass Transfer under Plasma Conditions—Annals of the New York Academy of Sciences 891:64–71

  48. Soloukhin RI (1980) Radiative heat transfer in high-temperature gases. Hemisphere, London

    Google Scholar 

  49. Sevast’yanenko VG (1979) J. Eng Physics 36:138–148

    Article  Google Scholar 

  50. Aubrecht V, Bartlová M, Urban F, Valenta J (2004) In: Bordage MC, Gleizes A, Gonzalez JJ (eds) Proceedings of 15th international conference gas discharges and their applications (GD 2004), LOC of GD 2004, pp 141–144

  51. Aubrecht V, Lowke JJ (1994) J Phys D Appl Phys 27:2066–2073

    Article  CAS  Google Scholar 

  52. Aubrecht V, Bartlová M (1997) IEEE Trans Plasma Sci 25:815–823

    Article  CAS  Google Scholar 

  53. Liebermann RW, Lowke JJ (1976) J Quant Spectrosc Radiat Transf 16:253–264

    Article  CAS  Google Scholar 

  54. Bartlová M, Aubrecht V (2006) Czech J Phys 56(Suppl. B):B632–B637

    Article  Google Scholar 

  55. Freton P, Gonzalez JJ, Gleizes A, Peyret FC, Caillibotte G, Delzenne M (2002) J Phys D Appl Phys 35:115–131

    Article  CAS  Google Scholar 

  56. Boulos MI, Fauchais P, Pfender E (1994) Thermal plasmas. Plenum Press, New York

    Book  Google Scholar 

  57. Mitchner M, Kruger CH Jr (1973) Partially ionized gases. Wiley, New York

    Google Scholar 

Download references

Acknowledgements

The author would like to thank Assoc. Prof. M. Hrabovský for many helpful discussions throughout the years in IPP. This work has been supported by the Grant Agency of the Czech Republic under the grant number GA15-19444S. Our appreciation goes also to the computational resources, provided by the CESNET LM2015042 and the CERIT Scientific Cloud LM2015085, provided under the programme “Projects of Large Research, Development, and Innovations Infrastructures”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiří Jeništa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeništa, J. Steam Torch Plasma Modelling. Plasma Chem Plasma Process 37, 653–687 (2017). https://doi.org/10.1007/s11090-017-9789-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-017-9789-7

Keywords

Navigation