Skip to main content
Log in

Addition of Sulphur to Graphene Nanoflakes Using Thermal Plasma for Oxygen Reduction Reaction in Alkaline Medium

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

A batch process is developed to generate sulphur functionalized graphene nanoflakes (S-GNFs), corresponding to nanoparticles of stacked graphene. The growth and functionalization of the catalysts are done in a single thermal plasma reactor. The GNFs are first grown through the decomposition of methane in the thermal plasma volume followed by homogeneous nucleation of the nanoparticles in the well-controlled recombining plasma stream allowing the 2-dimensional evolution of the nanoparticle morphology. The precursor feeding conditions are then changed to liquid carbon disulphide in order to generate sulphur-based functional groups on the nanoparticles. The plasma conditions and carbon disulphide injection are varied, and samples with tuneable amount of sulphur between 4 and 28 at% are obtained. The functional groups generated include polythiophene polymer partly covering the GNFs, sulphur functionalities implemented directly on the graphitic structure, and traces of orthorhombic sulphur. The S-GNFs exhibit higher electrocatalytic activity toward the oxygen reduction reaction in alkaline medium for the samples containing the highest amounts of sulphur.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. McLean G (2002) An assessment of alkaline fuel cell technology. Int J Hydrogen Energy 27:507–526. doi:10.1016/S0360-3199(01)00181-1

    Article  CAS  Google Scholar 

  2. Song C, Zhang J (2008) Electrocatalytic oxygen reduction reaction. PEM Fuel Cell Electrocatal Catal Layers. doi:10.1007/978-1-84800-936-3_2

    Google Scholar 

  3. Mukerjee S, Srinivasan S (1993) Enhanced electrocatalysis of oxygen reduction on platinum alloys in proton exchange membrane fuel cells. J Electroanal Chem 357:201–224. doi:10.1016/0022-0728(93)80380-Z

    Article  CAS  Google Scholar 

  4. Greeley J, Stephens IEL, Bondarenko AS et al (2009) Alloys of platinum and early transition metals as oxygen reduction electrocatalysts. Nat Chem 1:552–556. doi:10.1038/nchem.367

    Article  CAS  Google Scholar 

  5. Zhang X, Ouyang W, Zeng D et al (2015) Nitrogen doped sublimed carbon as non-noble metal catalyst for oxygen reduction reaction. Catal Today. doi:10.1016/j.cattod.2015.07.009

    Google Scholar 

  6. Niu K, Yang B, Cui J et al (2013) Graphene-based non-noble-metal Co/N/C catalyst for oxygen reduction reaction in alkaline solution. J Power Sources 243:65–71. doi:10.1016/j.jpowsour.2013.06.007

    Article  CAS  Google Scholar 

  7. Bezerra CWB, Zhang L, Lee K et al (2008) A review of Fe-N/C and Co-N/C catalysts for the oxygen reduction reaction. Electrochim Acta 53:4937–4951. doi:10.1016/j.electacta.2008.02.012

    Article  CAS  Google Scholar 

  8. Wu Z, Yang S, Sun Y et al (2012) 3D nitrogen-doped graphene aerogel-supported Fe3O4 nanoparticles as efficient electrocatalysts for the oxygen reduction reaction. J Am Chem Soc 134:9082–9085. doi:10.1021/ja3030565

    Article  CAS  Google Scholar 

  9. Razmjooei F, Singh KP, Song MY, Yu JS (2014) Enhanced electrocatalytic activity due to additional phosphorous doping in nitrogen and sulfur-doped graphene: a comprehensive study. Carbon N Y 78:257–267. doi:10.1016/j.carbon.2014.07.002

    Article  CAS  Google Scholar 

  10. Olivella MA, Palacios JM, Vairavamurthy A et al (2002) A study of sulfur functionalities in fossil fuels using destructive- (ASTM and Py-GC-MS) and non-destructive- (SEM-EDX, XANES and XPS) techniques. Fuel 81:405–411. doi:10.1016/S0016-2361(01)00198-3

    Article  CAS  Google Scholar 

  11. Sheng Z-H, Gao H-L, Bao W-J et al (2012) Synthesis of boron doped graphene for oxygen reduction reaction in fuel cells. J Mater Chem 22:390–395. doi:10.1039/C1JM14694G

    Article  CAS  Google Scholar 

  12. Yang Z, Yao Z, Li G et al (2012) Sulfur-doped graphene as an efficient metal-free cathode catalyst for oxygen reduction. ACS Nano 6:205–211. doi:10.1021/nn203393d

    Article  CAS  Google Scholar 

  13. Zhang L, Niu J, Li M, Xia Z (2014) Catalytic mechanisms of sulfur-doped graphene as efficient oxygen reduction reaction catalysts for fuel cells. J Phys Chem C 118:3545–3553. doi:10.1021/jp410501u

    Article  CAS  Google Scholar 

  14. Park J, Jang YJ, Kim YJ et al (2013) Sulfur-doped graphene as a potential alternative metal-free electrocatalyst and Pt-catalyst supporting material for oxygen reduction reaction. Phys Chem Chem Phys 16:103–109. doi:10.1039/c3cp54311k

    Article  Google Scholar 

  15. Yang S, Zhi L, Tang K et al (2012) Efficient synthesis of heteroatom (N or S)-doped graphene based on ultrathin graphene oxide-porous silica sheets for oxygen reduction reactions. Adv Funct Mater 22:3634–3640. doi:10.1002/adfm.201200186

    Article  CAS  Google Scholar 

  16. Pristavita R, Meunier JL, Berk D (2011) Carbon nano-flakes produced by an inductively coupled thermal plasma system for catalyst applications. Plasma Chem Plasma Process 31:393–403. doi:10.1007/s11090-011-9289-0

    Article  CAS  Google Scholar 

  17. Pristavita R, Mendoza-Gonzalez NY, Meunier JL, Berk D (2010) Carbon blacks produced by thermal plasma: the influence of the reactor geometry on the product morphology. Plasma Chem Plasma Process 30:267–279. doi:10.1007/s11090-010-9218-7

    Article  CAS  Google Scholar 

  18. Meunier JL, Mendoza-Gonzalez NY, Pristavita R et al (2014) Two-dimensional geometry control of graphene nanoflakes produced by thermal plasma for catalyst applications. Plasma Chem Plasma Process. doi:10.1007/s11090-014-9524-6

    Google Scholar 

  19. Legrand U, Mendoza Gonzalez NY, Pascone P et al (2016) Synthesis and in situ oxygen functionalization of deposited graphene nanoflakes for nanofluid generation. Carbon N Y 102:216–223

    Article  CAS  Google Scholar 

  20. Pascone P-A, de Campos J, Meunier J-L, Berk D (2016) Iron incorporation on graphene nanoflakes for the synthesis of a non-noble metal fuel cell catalyst. Appl Catal B Environ 193:9–15. doi:10.1016/j.apcatb.2016.04.002

    Article  CAS  Google Scholar 

  21. Pascone P-A, Berk D, Meunier J-L (2013) A stable and active iron catalyst supported on graphene nano-flakes for the oxygen reduction reaction in polymer electrolyte membrane fuel cells. Catal Today 211:162–167. doi:10.1016/j.cattod.2013.03.026

    Article  CAS  Google Scholar 

  22. Schmid M, Steinrück HP, Gottfried JM (2014) A new asymmetric Pseudo-Voigt function for more efficient fitting of XPS lines. Surf Interface Anal 46:505–511. doi:10.1002/sia.5521

    Article  CAS  Google Scholar 

  23. Bokobza L, Bruneel J-L, Couzi M (2015) Raman spectra of carbon-based materials (from graphite to carbon black) and of some silicone composites. C J Carbon Res 1:77–94. doi:10.3390/c1010077

    Article  Google Scholar 

  24. Wu G, Johnston CM, Mack NH et al (2011) Synthesis-structure-performance correlation for polyaniline-Me-C non-precious metal cathode catalysts for oxygen reduction in fuel cells. J Mater Chem 21:11392–11405. doi:10.1039/c0jm03613g

    Article  CAS  Google Scholar 

  25. Harvey PD, Butler IS (1986) Raman spectra of orthorhombic sulfur at 40 K. J Raman Spectrosc 17:329–334. doi:10.1002/jrs.1250170407

    Article  CAS  Google Scholar 

  26. Larouche N, Stansfield BL (2010) Classifying nanostructured carbons using graphitic indices derived from Raman spectra. Carbon N Y 48:620–629. doi:10.1016/j.carbon.2009.10.002

    Article  CAS  Google Scholar 

  27. Downs B, Robinson S, Yang H, Mooney P. RRUFF. http://rruff.info/Sulfur/R050006

  28. Zhang Y, Han T, Fang J et al (2014) Integrated Pt2Ni alloy@Pt core-shell nanoarchitectures with high electrocatalytic activity for oxygen reduction reaction. J Mater Chem A 2:11400–11407. doi:10.1039/C4TA00731J

    Article  CAS  Google Scholar 

  29. Tanaka K, Yoshizawa K, Takeuchi T, Yamauchi JUN (1990) Plasma polymerization of thiophene and 3-methylthiophene. Synthetic Met 38:107–116

    Article  CAS  Google Scholar 

  30. Zhou Y, Candelaria SL, Liu Q et al (2014) Sulfur-rich carbon cryogels for supercapacitors with improved conductivity and wettability. J Mater Chem A 2:8472. doi:10.1039/c4ta00894d

    Article  CAS  Google Scholar 

  31. Li C, Shi G (2013) Polythiophene-based optical sensors for small molecules. ACS Appl Mater Interfaces 5:4503–4510. doi:10.1021/am400009d

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge Pierre Pascone for the Raman spectroscopy, Dr. Lihong Shang for the XRD measurements, and Dr Cornelia Chilian for the NAA. We also acknowledge the funding contributions from McGill Engineering Doctoral Award (MEDA), the Fonds de Recherche Nature et Technologie du Quebec (FRNTQ) and from Natural Science and Engineering Research Council (NSERC) of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich Legrand.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Legrand, U., Meunier, JL. & Berk, D. Addition of Sulphur to Graphene Nanoflakes Using Thermal Plasma for Oxygen Reduction Reaction in Alkaline Medium. Plasma Chem Plasma Process 37, 841–856 (2017). https://doi.org/10.1007/s11090-017-9787-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-017-9787-9

Keywords

Navigation