Skip to main content
Log in

Design-Oriented Modelling of Different Quenching Solutions in Induction Plasma Synthesis of Copper Nanoparticles

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

The aim of this paper is to compare the effects of different mechanisms underlying the synthesis of copper nanoparticles using an atmospheric pressure radio-frequency induction thermal plasma. A design oriented modelling approach was used to parametrically investigate trends and impact of different parameters on the synthesis process through a thermo-fluid dynamic model coupled with electromagnetic field equations for describing the plasma behaviour and a moment method for describing nanoparticles nucleation, growth and transport. The effect of radiative losses from Cu vapour on the precursor evaporation efficiency is highlighted, with occurrence of loading effect even with low precursor feed rate due to the decrease in plasma temperature. A method to model nanoparticle deposition on a porous wall is proposed, in which a sticking coefficient is employed to model particle sticking on the porous wall used to carry a quench gas flow into the chamber. Two different reaction chamber designs combined with different quench gas injection strategies (injection through a porous wall for “active” quenching; injection of a shroud gas for “passive” quenching) are analysed in terms of process yield and size distribution of the synthetized nanoparticles. Conclusion can be drawn on the characteristics of each quenching strategy in terms of throughput and mean diameter of the synthesized nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Ostrikov K, Murphy AB (2007) J Phys D Appl Phys 40:2223–2241

    Article  CAS  Google Scholar 

  2. Ostrikov K, Cvelbar U, Murphy AB (2011) J Phys D Appl Phys 44:174001

    Article  Google Scholar 

  3. Shigeta M, Murphy AB (2011) J Phys D Appl Phys 44:174025

    Article  Google Scholar 

  4. Seo JH, Hong BG (2012) Nucl Eng Tech 44:9–20

    Article  CAS  Google Scholar 

  5. Murphy AB, Boulos MI, Colombo V, Fauchais P, Ghedini E, Gleizes A, Mostaghimi J, Proulx P, Schram DC (2008) High Temp Mater Process 12:255–336

    Article  CAS  Google Scholar 

  6. Colombo V, Ghedini E, Gherardi M, Sanibondi P, Shigeta M (2012) Plasma Sci Technol 21:025001

    Article  Google Scholar 

  7. Shigeta M, Nishiyama H (2005) J Heat Transfer 127:1223–1231

    Article  Google Scholar 

  8. Colombo V, Ghedini E, Gherardi M, Sanibondi P (2013) Plasma Sources Sci Technol 22:035010

    Article  Google Scholar 

  9. Boulos MI (2015) Plasma Chem Plasma Process. doi:10.1007/s11090-015-9660-7

    Google Scholar 

  10. Shigeta M, Watanabe T (2008) J Appl Phys 103:074903

    Article  Google Scholar 

  11. Mendoza-Gonzalez NY, Goortani BM, Proulx P (2007) Mater Sci Eng C 27:1265–1269

    Article  CAS  Google Scholar 

  12. Goortani BM, Mendoza-Gonzalez NY, Proulx P (2006) Int J Chem Reactor Eng 4:A33

    Google Scholar 

  13. Colombo V, Ghedini E, Gherardi M, Sanibondi P (2012) Plasma Sci Technol 21:055007

    Article  Google Scholar 

  14. Goortani BM, Proulx P, Xue S, Mendoza-Gonzalez NY (2007) Powder Technol 175:22–32

    Article  CAS  Google Scholar 

  15. ANSYS (2013) ANSYS FLUENT 15.0 theory guide. Ansys Inc, Canonsburg

    Google Scholar 

  16. Bilodeau JF, Proulx P (1996) Aerosol Sci Technol 24:175–189

    Article  CAS  Google Scholar 

  17. Cressault Y, Gleizes A (2013) J Phys D Appl Phys 46:415206

    Article  Google Scholar 

  18. Gleizes A, Cressault Y, Teulet P (2010) Plasma Sci Technol 19:055013

    Article  Google Scholar 

  19. Colombo V, Ghedini E, Sanibondi P (2010) Plasma Sci Technol 19:065024

    Article  Google Scholar 

  20. Mendoza-Gonzalez NY, Morsli ME, Proulx P (2008) J Therm Spray Technol 17:533–550

    Article  Google Scholar 

  21. Friedlander SK (2000) Smoke, dust and haze, fundamentals of aerosol dynamics, 2nd edn. Oxford University Press, Oxford

    Google Scholar 

  22. Fuchs NA (1964) Mechanics of aerosols. Pergamon, New York

    Google Scholar 

  23. Phanse GM, Pratsinis SE (1989) Aerosol Sci Technol 11:100–119

    Article  CAS  Google Scholar 

  24. Pratsinis SE (1988) J Coll Interf Sci 124:416–427

    Article  CAS  Google Scholar 

  25. Bernardi D, Colombo V, Ghedini E, Mentrelli A (2003) Eur Phys J D 27:55–72

    Article  CAS  Google Scholar 

  26. Chen K, Boulos MI (1994) J Phys D Appl Phys 27:946

    Article  CAS  Google Scholar 

  27. Colombo V, Ghedini E, Sanibondi P (2008) Progr Nucl Energy 50:921

    Article  CAS  Google Scholar 

  28. Bourasseau E, Homman A, Durand O, Ghoufi A, Malfreyt P (2013) Eur J Phys B 86:251

    Article  Google Scholar 

  29. Lide DR (2003) Handbook of chemistry and physics, 84th edn. CRC Press, Boca Raton

    Google Scholar 

  30. Pristavita R, Mendoza-Gonzales NY, Meunier JL, Berk D (2010) Plasma Chem Plasma Process 30:267–279

    Article  CAS  Google Scholar 

  31. Bianconi S, Boselli M, Gherardi M, Colombo V (2016) J Phys D: Appl Phys (submitted)

Download references

Acknowledgements

The authors would like to thank Dr. Emanuele Ghedini for some helpful discussion concerning this work. Financial support from the European Union within the Horizon 2020 research and innovation programme, under Grant agreement n. 646155 (INSPIRED project http://www.nano-inspired.eu/), is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Boselli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bianconi, S., Boselli, M., Gherardi, M. et al. Design-Oriented Modelling of Different Quenching Solutions in Induction Plasma Synthesis of Copper Nanoparticles. Plasma Chem Plasma Process 37, 717–738 (2017). https://doi.org/10.1007/s11090-016-9779-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-016-9779-1

Keywords

Navigation