Skip to main content
Log in

Surface Processing of Polyester Canvas using Atmospheric Pressure Air Glow Discharge Plasma

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

A staggered contact electrode structure was proposed in this study. Through pressing the electrode closely to the surface of polyester canvas, the electric field distribution with intensive electric field in short gap while weak electric field in long gap was formed, which was conducive to inhibit the emergence of filamentary discharge. Specifically, such electric field distribution could restrain the development degree of electron avalanche so that the quasi atmospheric pressure glow discharge plasma with nearly uniform luminescence could be generated in air gaps between the electrode and the surfaces of polyester canvas. Moreover, the device based on multi groups of staggered contact electrode structures was employed to achieve the large-area and continuous processing of polyester canvas. Through scanning electron microscope observations and peel strength tests, it could be observed that the surface roughness of polyester fabrics was obviously enhanced and the adhesion property of the canvas was greatly improved after treatment. The peel strength value was increased from 3.5 to 7.3 N/mm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Salem AA, Morgan NN (2014) Modification of polyester and polyamide fabrics by atmospheric pressure glow discharge plasma. Polym Renew Resour 5:115

    CAS  Google Scholar 

  2. Morent R, Geyter ND, Verschuren J, Leys C et al (2008) Non-thermal plasma treatment of textiles. Surf Coat Technol 202:3427–3449

    Article  CAS  Google Scholar 

  3. Jelil RA (2015) A review of low-temperature plasma treatment of textile materials. J Mater Sci 50:5913–5943

    Article  CAS  Google Scholar 

  4. Mirjalili Mohammad, Karimi Loghman (2013) The impact of nitrogen low temperature plasma treatment upon the physical-chemical properties of polyester fabric. J Text Inst 104:98–107

    Article  CAS  Google Scholar 

  5. Vitchuli Narendiran, Shi Quan, Nowak Joshua et al (2013) Atmospheric plasma application to improve adhesion of electrospun nanofibers onto protective fabric. J Adhes Sci Technol 27:924–938

    Article  CAS  Google Scholar 

  6. Geyter ND, Morent R, Leys C (2006) Surface modification of a polyester non-woven with a dielectric barrier discharge in air at medium pressure. Surf Coat Technol 201:2460–2466

    Article  Google Scholar 

  7. Jia C, Chen P, Liu W, Li B, Wang Q (2011) Surface treatment of aramid fiber by air dielectric barrier discharge plasma at atmospheric pressure. Appl Surf Sci 257:4165–4170

    Article  CAS  Google Scholar 

  8. Fang K, Zhang C (2009) Surface physical-morphological and chemical changes leading to performance enhancement of atmospheric pressure plasma treated polyester fabrics for inkjet printing. Appl Surf Sci 255:7561–7567

    Article  CAS  Google Scholar 

  9. Yuen CWM, Jiang SQ, Kan CW, Tung WS (2007) Effect of low temperature plasma treatment on the electroless nickel plating of polyester fabric. J Appl Polym Sci 105:2046–2053

    Article  CAS  Google Scholar 

  10. Silva RCLD, Alves C, Nascimento JH, Neves JRO, Teixeira V (2012) Surface modification of polyester fabric by non-thermal plasma treatment. J Phys Conf Ser 406:1–22

    Article  Google Scholar 

  11. Luo Shijian, Van Ooij Wim J (2002) Surface modification of textile fibers for improvement of adhesion to polymeric matrices: a review. J Adhes Sci Technol 16:1715–1735

    Article  CAS  Google Scholar 

  12. Liu W, Jia L, Yan W, Kong F, Hao Y (2011) Study on the glow discharge in the atmospheric pressure. Curr Appl Phys 11:S117–S120

    Article  Google Scholar 

  13. Kurniawan D, Kim BS, Lee HY, Lim JY (2012) Atmospheric pressure glow discharge plasma polymerization for surface treatment on sized basalt fiber/polylactic acid composites. Compos B Eng 43:1010–1014

    Article  CAS  Google Scholar 

  14. Li X, Dong L, Zhao N, Yin Z, Fang T et al (2007) A simple device of generating glow discharge plasma in atmospheric pressure argon. Appl Phys Lett 91:161507–1615073

    Article  Google Scholar 

  15. Wang K, Wang W, Yang D, Huo Y, Wang D (2010) Surface modification of polypropylene non-woven fabric using atmospheric nitrogen dielectric barrier discharge plasma. Appl Surf Sci 256:6859–6864

    Article  CAS  Google Scholar 

  16. Sun G, Liu W, Li C, Zhang R (2013) The generation characteristics of dielectric barrier glow discharge plasma in air. J Phys Conf Ser 441:303–311

    Article  Google Scholar 

  17. Massines F, Rabehi A, Decomps P, Gadri RB et al (1998) Experimental and theoretical study of a glow discharge at atmospheric pressure controlled by dielectric barrier. J Appl Phys 83:2950–2957

    Article  CAS  Google Scholar 

  18. Massines F, Ségur P, Gherardi N, Khamphan C, Ricard A (2003) Physics and chemistry in a glow dielectric barrier discharge at atmospheric pressure: diagnostics and modelling. Surf Coat Technol 174–175:8–14

    Article  Google Scholar 

  19. Gherardi N, Gouda G, Gat E, Ricard A, Massines F (2000) Transition from glow silent discharge to micro-discharges in nitrogen gas. Plasma Sources Sci Technol 9:340–346

    Article  CAS  Google Scholar 

  20. Gherardi N, Massines F (2001) Mechanisms controlling the transition from glow silent discharge to streamer discharge in nitrogen. IEEE Trans Plasma Sci 29:536–544

    Article  CAS  Google Scholar 

  21. Liu W, Lei X, Zhao Q (2016) Study on glow discharge plasma used in polyester surface modification. Plasma Sci Technol 18:35–40

    Article  Google Scholar 

  22. Liu W, Zhao Q, Wang T, Duan X, Li C, Lei X (2016) Degradation of organic pollutants using atmospheric pressure glow discharge plasma. Plasma Chem Plasma Process 36:1011–1020

    Article  Google Scholar 

  23. Okazaki S, Kogoma M, Uehara M et al (1993) Appearance of stable glow discharge in air, argon, oxygen and nitrogen at atmospheric pressure using a 50 Hz source. J Phys D Appl Phys 26:889–892

    Article  CAS  Google Scholar 

  24. Kriegseis J, Möller B, Grundmann S et al (2011) Capacitance and power consumption quantification of dielectric barrier discharge (DBD) plasma actuators. J Electrostat 69:302–312

    Article  Google Scholar 

  25. Liu W, Li C (2014) Study on the generation characteristics of dielectric barrier discharge plasmas on water surface. Plasma Sci Technol 16:26–31

    Article  CAS  Google Scholar 

  26. Boussaton MP, Coquillat S, Chauzy S, Georgis JF (2005) Influence of water conductivity on micro-discharges from raindrops in strong electric fields. Atmos Res 76:330–345

    Article  CAS  Google Scholar 

  27. Holub M (2012) On the measurement of plasma power in atmospheric pressure DBD plasma reactors. Int J Appl Electromagnet Mech 39:81–87

    Google Scholar 

  28. Moravej M, Yang X, Nowling GR et al (2004) Physics of high-pressure helium and argon radio-frequency plasmas. J Appl Phys 96:7011–7017

    Article  CAS  Google Scholar 

  29. Gotoh K, Yasukawa A (2011) Atmospheric pressure plasma modification of polyester fabric for improvement of textile-specific properties. Text Res J 81:368–378

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenzheng Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, W., Chen, X., Lei, X. et al. Surface Processing of Polyester Canvas using Atmospheric Pressure Air Glow Discharge Plasma. Plasma Chem Plasma Process 37, 465–474 (2017). https://doi.org/10.1007/s11090-016-9774-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-016-9774-6

Keywords

Navigation