Skip to main content
Log in

Plasma Catalytic Synthesis of Ammonia Using Functionalized-Carbon Coatings in an Atmospheric-Pressure Non-equilibrium Discharge

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

We investigate the synthesis of ammonia in a non-equilibrium atmospheric-pressure plasma using functionalized-nanodiamond and diamond-like-carbon coatings on α-Al2O3 spheres as catalysts. Oxygenated nanodiamonds were found to increase the production yield of ammonia, while hydrogenated nanodiamonds decreased the yield. Neither type of nanodiamond affected the plasma properties significantly. Using diffuse-reflectance FT-IR and XPS, the role of different functional groups on the catalyst surface was investigated. Evidence is presented that the carbonyl group is associated with an efficient surface adsorption and desorption of hydrogen in ammonia synthesis on the surface of the nanodiamonds, and an increased production of ammonia. Conformal diamond-like-carbon coatings, deposited by plasma-enhanced chemical vapour deposition, led to a plasma with a higher electron density, and increased the production of ammonia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Serp P, Machado B (2015) Nanostructured carbon materials for catalysis. Royal Society of Chemistry, Cambridge

    Google Scholar 

  2. Jan R, Kenneth P (2013) Comprehensive inorganic chemistry II. Elsevier, Amsterdam

    Google Scholar 

  3. Figueiredo JL, Fernando M, Pereira R (2010) The role of surface chemistry in catalysis with carbons. Catal Today 150:2

    Article  CAS  Google Scholar 

  4. Rodriguez-Reinoso F (1998) The role of carbon materials in heterogeneous catalysis. Carbon 36:159

    Article  CAS  Google Scholar 

  5. Smil V (1999) Detonator of the population explosion. Nature 400:415

    Article  CAS  Google Scholar 

  6. Michalsky R, Parman BJ, Amanor-Boadu V, Pfromm PH (2012) Solar thermochemical production of ammonia from water, air and sunlight: thermodynamic and economic analyses. Energy 42:251

    Article  CAS  Google Scholar 

  7. Murphy AB (2012) Transport coefficients of plasmas in mixtures of nitrogen and hydrogen. Chem Phys 398:64

    Article  CAS  Google Scholar 

  8. Avery W (1988) A role for ammonia in the hydrogen economy. Int J Hydrogen Energy 13:761

    Article  CAS  Google Scholar 

  9. Little DJ, Smith MR III, Hamann TW (2015) Electrolysis of liquid ammonia for hydrogen generation. Energy Environ Sci 8:2775

    Article  CAS  Google Scholar 

  10. Samukawa S, Hori M, Rauf S, Tachibana K, Bruggeman P, Kroesen G, Whitehead JC, Murphy AB, Gutsol AF, Starikovskaia S, Kortshagen U, Boeuf JP, Sommerer TJ, Kushner MJ, Czarnetzki U, Mason N (2012) The 2012 plasma roadmap. J Phys D Appl Phys 45:253001

    Article  Google Scholar 

  11. Neyts EC, Bogaerts A (2014) Understanding plasma catalysis through modelling and simulation—a review. J Phys D Appl Phys 47:224010

    Article  Google Scholar 

  12. Bai M, Zhang A, Bai M, Bai X, Gao H (2008) Synthesis of ammonia using CH4/N2 plasmas based on micro-gap discharge under environmentally friendly conditions. Plasma Chem Plasma Process 28:405

    Article  CAS  Google Scholar 

  13. Hovarth G, Mason NJ, Polachova L, Zahoran M, Morasvky L, Matejcik S (2010) Packed bed DBD discharge experiments in admixtures of N2 and CH4. Plasma Chem Plasma Process 30:565

    Article  Google Scholar 

  14. Nakajima J, Sekiguchi H (2008) Synthesis of ammonia using microwave discharge at atmospheric pressure. Thin Solid Films 516:4446

    Article  CAS  Google Scholar 

  15. Helden JH, Wagemans W, Yagci G, Zijlmans RAB, Schram DC, Engeln R, Lombardi G, Stancu GD, Röpke J (2007) Detailed study of the plasma activated catalytic generation of ammonia in N2–H2 plasmas. J Appl Phys 101:043305

    Article  Google Scholar 

  16. Patil BS, Wang Q, Hessel V, Lang J (2015) Plasma N2 fixation: 1900–2014. Catal Today 256:49

    Article  CAS  Google Scholar 

  17. Zhang J, Su DS, Blume R, Schlögl R, Wang R, Yang X, Gajović A (2010) Surface chemistry and catalytic reactivity of a nanodiamond in the steam-free dehydrogenation of ethylbenzene. Angew Chem Int Ed 49:8640

    Article  CAS  Google Scholar 

  18. Batsanov S, Gavrilkin S, Batsanov A, Poyarkov K, Kulakova I, Johnson D, Mendis B (2012) Giant dielectric permittivity of detonation-produced nanodiamond is caused by water. J Mater Chem 22:11166

    Article  CAS  Google Scholar 

  19. Kondo T, Neitzel I, Mochalin V, Urai J, Yuasa M, Gogotsi Y (2013) Electrical conductivity of thermally hydrogenated nanodiamond powders. J Appl Phys 113:214307

    Article  Google Scholar 

  20. Zhu D, Zhang L, Ruther R, Hamers R (2013) Photo-illuminated diamond as a solid-state source of solvated electrons in water for nitrogen reduction. Nat Mater 12:836

    Article  CAS  Google Scholar 

  21. Jentoft FC (2014) Advances in catalysis. Elsevier, London

    Google Scholar 

  22. Bai M, Zhang Z, Bai X, Bai M, Ning W (2003) Plasma synthesis of ammonia with a microgap dielectric barrier discharge at ambient pressure. IEEE Trans Plasma Sci 31:1285

    Article  CAS  Google Scholar 

  23. Shimoni O, Cervenka J, Karle T, Fox K, Gibson B, Tomljenovic-Hanic S, Greentree A, Prawer S (2014) Development of a templated approach to fabricate diamond patterns on various substrates. Appl Mater Interfaces 6:8894

    Article  CAS  Google Scholar 

  24. Aramesh M, Fox K, Lau DWM, Fang J, Ostrikov K, Prawer S, Cervenka J (2014) Multifunctional three-dimensional nanodiamond-nanoporous alumina nanoarchitectures. Carbon 75:452

    Article  CAS  Google Scholar 

  25. Wagner HE, Brandenburg R, Kozlov KV, Sonnenfeld A, Michel P, Behnke JF (2003) The barrier discharge: basic properties and applications to surface treatment. Vacuum 71:417

    Article  CAS  Google Scholar 

  26. BOLSIG + http://www.bolsig.laplace.univ-tlse.fr/

  27. Kim J, Choi Y, Hwang Y (2006) Electron density and temperature measurement method by using emission spectroscopy in atmospheric pressure non-equilibrium nitrogen plasmas. Phys Plasmas 13:093501

    Article  Google Scholar 

  28. Greig A, Charles C, Hawkins R, Boswell R (2013) Direct measurement of neutral gas heating in a radio-frequency electrothermal plasma micro-thruster. Appl Phys Lett 103:074101

    Article  Google Scholar 

  29. Greig A, Charles C, Boswell R (2016) Neutral gas temperature estimates and metastable resonance energy transfer for argon-nitrogen discharges. Phys Plasmas 23:013508

    Article  Google Scholar 

  30. Charles C, Bish A, Boswell R, Dedrick J, Greig A, Hawkins R, Ho TS (2015) A short review of experimental and computational diagnostics for radiofrequency plasma micro-thrusters. Plasma Chem Plasma Process 36:29

    Article  Google Scholar 

  31. Chakrapani V, Angus JC, Anderson AB, Wolter SD, Stoner BR, Sumanasekera GU (2007) Charge transfer equilibria between diamond and an aqueous oxygen electrochemical redox couple. Science 318:1424

    Article  CAS  Google Scholar 

  32. Zang J, Wang Y, Bian L, Zhang J, Meng F, Zhao Y, Ren S, Qu X (2012) Surface modification and electrochemical behavior of undoped nanodiamonds. Electrochim Acta 72:68

    Article  CAS  Google Scholar 

  33. Butenko YV, Kuznetsov VL, Paukshtis EA, Stadnichenko AI, Mazov IN, Moseenkov SI, Boronin AI, Kosheev SV (2006) The thermal stability of nanodiamond surface groups and onset of nanodiamond graphitization fullerenes. Nanotubes Carbon Nanostruct 14:557

    Article  CAS  Google Scholar 

  34. Mironov E, Koretz A, Petrov E (2002) Detonation synthesis ultradispersed diamond structural properties investigation by infrared absorption. Diamond Rel Mater 11:872

    Article  CAS  Google Scholar 

  35. Mitev D, Dimitrova R, Spassova M, Minchev C, Stavrev S (2007) Surface peculiarities of detonation nanodiamonds in dependence of fabrication and purification methods. Diamond Rel Mater 16:776

    Article  CAS  Google Scholar 

  36. Xu X, Yu Z, Zhu Y, Wang B (2005) Influence of surface modification adopting thermal treatments on dispersion of detonation nanodiamond. J Sol St Chem 178:688

    Article  CAS  Google Scholar 

  37. Gómez-Ramírez A, Cotrino J, Lambert RM, González-Elipe AR (2015) Efficient synthesis of ammonia from N2 and H2 alone in a ferroelectric packed-bed DBD reactor. Plasma Sources Sci Technol 24:065011

    Article  Google Scholar 

  38. Budavari S, O’Neil M, Smith A, Heckelman P, Obenchain J (eds) (1996) The Merck Index: an encyclopedia of chemicals, drugs, and biologicals, 12th edn. Merck, Whitehouse Station

    Google Scholar 

  39. Louis-Rose I, Méthivier C, Védrine JC, Pradier C-M (2006) Reduction of N2O by NH3 on polycrystalline copper and Cu(110): a combined XPS, FT-IRRAS and kinetics investigation. Appl Catal B Environ 62:1

    Article  CAS  Google Scholar 

  40. Chourabi B, Fripiat JJ (1981) Determination of tetrahedral substitutions and interlayer surface heterogeneity from vibrational spectra of ammonium in smectites. Clays Clay Miner 29:260

    Article  CAS  Google Scholar 

  41. Kameoka S, Kuriyama Tm Kuroda M, Ito S, Kunimori K (1995) The chemical interaction between plasma-excited nitrogen and the surface of titanium dioxide. Appl Surf Sci 89:411

    Article  CAS  Google Scholar 

  42. Mayo DW, Miller FA, Hannah RW (2003) Course notes on interpretation of infrared and Raman spectrum. Wiley, Hoboken

    Google Scholar 

  43. Ferrari AC, Rodil SE, Robertson J (2003) Interpretation of infrared and Raman spectra of amorphous carbon nitrides. Phys Rev B 67:155306

    Article  Google Scholar 

  44. Gordiets B, Ferreira CM, Pinheiro MJ, Ricard A (1998) Self-consistent kinetic model of low-pressure N2–H2 flowing discharges. Plasma Sources Sci Technol 7:363

    Article  CAS  Google Scholar 

  45. Baer DRR, Engelhard MHH (2010) XPS analysis of nanostructured materials and biological surfaces. J Electron Spectrosc Relat Phenom 178:415

    Article  Google Scholar 

  46. Tanaka S, Utama H, Matsumoto O (1994) Synergistic effects of catalysts and plasmas on the synthesis of ammonia and hydrazine. Plasma Chem Plasma Process 14:491

    Article  CAS  Google Scholar 

  47. Marinov D (2012) Reactive adsorption of molecules and radicals on surfaces under plasma exposure. PhD Thesis, École Polytechnique, France

  48. Zhdanov VP, Pavlicek J, Knor Z (1988) Pre-exponential factors for elementary surface processes. Catal Rev Sci Eng 30:501

    Article  CAS  Google Scholar 

  49. Grill A (1999) Electrical and optical properties of diamond-like carbon. Thin Solid Films 355:189

    Article  Google Scholar 

  50. Kriegseis J, Möller B, Grundmann S, Tropea C (2011) Capacitance and power consumption quantification of dielectric barrier discharge (DBD) plasma actuators. J Electrostat 69:302

    Article  Google Scholar 

  51. Naudé N, Cambronne J-P, Gherardi N, Massines F (2005) Electrical model and analysis of the transition from an atmospheric pressure Townsend discharge to a filamentary discharge. J Phys D Appl Phys 38:530

    Article  Google Scholar 

  52. Capitelli M, Ferreira CM, Gordiets BF, Osipov AI (2011) Plasma kinetics in atmospheric gases, Springer Series on Atomic, Optical, and Plasma Physics. Springer, Berlin

    Google Scholar 

  53. Lureiro J, Ferreira CM (1986) Coupled electron energy and vibrational distribution functions in stationary N2 discharge. J Phys D Appl Phys 19:17

    Article  Google Scholar 

  54. Albert R, Barabási A-L (2002) Statistical mechanics of complex networks. Rev Mod Phys 74:47

    Article  Google Scholar 

  55. Aramesh M (2016) Bioengineering applications of nanoporous anodic aluminium. PhD thesis, University of Melbourne, Australia

Download references

Acknowledgments

The authors are grateful for the help and useful advice from Drs. Avi Bendavid, Jawad Haidar, Shailesh Kumar and Gerard de Groot of CSIRO and Drs Errol Atkinson and Erik Thorvaldson of the Australian Government’s National Measurement Institute. Aspects of this research made use of software developed by the Inversion Laboratory (Ilab). Ilab is a part of the Auscope AGOS project—an initiative of the Australian Government funded through the Education Investment Fund. This research was partially funded by Australian Research Council Discovery Project (DP140100571).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony B. Murphy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, J., Aramesh, M., Shimoni, O. et al. Plasma Catalytic Synthesis of Ammonia Using Functionalized-Carbon Coatings in an Atmospheric-Pressure Non-equilibrium Discharge. Plasma Chem Plasma Process 36, 917–940 (2016). https://doi.org/10.1007/s11090-016-9711-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-016-9711-8

Keywords

Navigation