Skip to main content
Log in

Study of Condensed Phases, of Vaporization Temperatures of Aluminum Oxide and Aluminum, of Sublimation Temperature of Aluminum Nitride and Composition in an Air Aluminum Plasma

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

With the Gibbs free energy method, we determine the molar fraction in a plasma at and out of thermal equilibrium consisting of air and aluminum for several percentages in the temperature range of 500–6000 K. We take three temperatures into account (T rot  = T h ; T vib ; T ex  = T e ). We indicate the formulae and the numerical method used to perform the calculation taking three condensed phases AlN, Al, Al2O3 into account. We show that the air percentage plays a major role to create these phases. We clarify the role plays on the vaporization temperatures and on the sublimation temperature by the non-thermal equilibrium of the plasma. This kind of plasma is found in arc roots, near a wall, in plasmas with a high value of electrical field,… The influence of the pressures until 30 × 105 Pa. is shown on molar fraction of the chemical species, on the vaporization temperatures and on the sublimation temperature. The vaporization temperatures are given versus the thermal non equilibrium versus various mixtures (air, aluminum) and versus the pressures (105 Pa–30 × 105 Pa).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. André P (1995) Partition functions and concentrations in plasmas out of thermal equilibrium. IEEE Trans Plasma Sci 23(3):453

    Article  Google Scholar 

  2. André P, Koalaga Z (2010) Composition of a thermal plasma formed from PTFE with copper in non-oxidant atmosphere Part I Definition of a test case with the SF6. High Temp Mater Process Int Q High-Technol Plasma Process 14(3):285–294

    Google Scholar 

  3. André P, Lefort A (1998) The influence of thermal disequilibrium on a plasma consisting of insulator vapours. J Phys D Appl Phys 31(6):717

    Article  Google Scholar 

  4. André P, Barinov Y, Faure G, Shkol’nik S (2011) Modelling radiation spectrum of a discharge with two liquid non-metallic (tap-water) electrodes in air at atmospheric pressure. J Phys D Appl Phys 44(37):375203

    Article  Google Scholar 

  5. André P, Bussière W, Coulbois A, Gelet J, Rochette D (2016) Modelling of electrical conductivity of a silver plasma at low temperature. Plasma Sci Technol (accepted)

  6. Aubreton J, Elchinger M, André P (2013) Influence of Partition Function and Intercation Potential on Transport Properties of Thermal Plasmas. Plasma Chem Plasma Process 33(1):367–399

    Article  CAS  Google Scholar 

  7. Augeard A, Desprez P, Singo T, Abbaoui M (2015) Observation par caméra rapide des spots cathodiques dans l’air au niveau du CID des éléments batterie lithium-ion. JITIPEE 1:1–9

    Google Scholar 

  8. Capitelli M, Molinari E (1970) Problems of determination of high temperature thermodynamic properties of rare gases with application to mixtures. J Plasma Phys 4(2):335–355

    Article  CAS  Google Scholar 

  9. Chase MW (1998) NIST-JANAF thermochemical tables (Journal of physical and chemical reference data monograph No. 9), 4th edn. American Chemical Society and the American Institute of Physics for NIST (National Institute of Standards and Technology)

  10. Drellishak K, Aeschliman D, Cambel Ali Bulent (1965) Partition functions and thermodynamic properties of nitrogen and oxygen plasmas. Phys Fluids 8(9):1590

    Article  CAS  Google Scholar 

  11. Dricot F, Reher H (1994) Survey of arc tracking on aerospace cables and wires. IEEE Trans Dielectr Electr Insul 1(5):896–903

    Article  CAS  Google Scholar 

  12. Fridman A, Kennedy L (2004) Plasma physics and engineering. Taylor & Francis, New York

    Book  Google Scholar 

  13. Giordano D, Capitelli M (2002) Nonuniqueness of the two temperature Saha equation and related consideration. Phys Rev E 65:016401

    Article  CAS  Google Scholar 

  14. Giordano D, Capitelli M (1995) Two-temperature Saha Equation a misunderstood problem. J Thermophys Heat Transfer 9(4):803

    Article  CAS  Google Scholar 

  15. Gordon S, McBride B (1976) Computer Program for calculation of complex chemical equilibrium compositions, Rocket Performance Incident and reflected shocks and chapman jouguet detonation. NASA

  16. Haynes W, Lide D, Bruno T (2012) CRC Handbook of chemistry and physics, 93rd edn. CRC Press, Taylor & Francis Group

  17. Lefort A, Abbaoui M (2012) Theory about arc root: a review. IOP Cof Ser Mater Sci Eng 29:012006

    Article  Google Scholar 

  18. Lesaint P, Touzani R (1989) Approximation of the heat equation in a variable doamin with application to the Stefan problem. SIAM J Numer Anal 26(2):366–379

    Article  Google Scholar 

  19. Murphy AB (2015) Why the arc and its interactions with the electrodes are important in predictive modelling of arc welding. Plasma Phys Technol 2(3):233–240

    Google Scholar 

  20. Murphy A, Tanaka M, Yamamoto K, Sato T, Lowke J (2009) Modelling of thermal plasmas for arc welding: the role of the shielding gas properties and of metal vapour. J Phys D Appl Phys 42:194006

    Article  Google Scholar 

  21. NIST. (s.d.). Récupéré sur NIST Atomic Spectra Database Levels Data: http://physics.nist.gov/PhysRefData/ASD/levels_form.html

  22. Raja LL, Varghese P, Wilson D (1997) Modeling of the electrothermal ignitor metal vapor plasma for electrothermal-chemical guns. IEEE Trans Magn 33(1):316–321

    Article  Google Scholar 

  23. Rochette D, Bussière W, André P (2004) Composition, enthalpy, and vaporization temperature calculation of Ag–SiO2 plasmas with air in the temperature range from 1000 to 6000 K and for pressure included between 1 and 50 bars. Plasma Chem Plasma Process 24(3):475–492

    Article  CAS  Google Scholar 

  24. Rong M, Wang W, Yan J, Murphy A, Spencer J (2011) Thermophysical properties of nitrogen plasmas under thermal equilibrium and non-equilibrium conditions. Phys Plasmas 18:113502. doi:10.1063/1.3657426

    Article  Google Scholar 

  25. Rossignol J, Abbaoui M, Clain S (2000) Numerical modelling of thermal ablation phenomena due to a cathodic spot. J Phys D Appl Phys 33:2079–2086

    Article  CAS  Google Scholar 

  26. Staack D, Bakhtier F, Gutsol A, Fridman A (2005) Characterization of a dc atmospheric pressure normal glow discharge. Plasma Sour Sci Technol 14(4):700–711

    Article  CAS  Google Scholar 

  27. Zhao TL, Xu Y, Song YH, Li XS, Liu JL, Liu JB, Zhu AM (2013) Determination of vibrational and rotational temperatures in a gliding arc discharge by using overlapped molecular emission spectra. J Phys D Appl Phys 46(34):345201

    Article  Google Scholar 

  28. Wade K, Banister A (1975) The chemistry of aluminium, gallium, indium and thallium. Pergamon Press, Oxford

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. André.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

André, P., Abbaoui, M., Augeard, A. et al. Study of Condensed Phases, of Vaporization Temperatures of Aluminum Oxide and Aluminum, of Sublimation Temperature of Aluminum Nitride and Composition in an Air Aluminum Plasma. Plasma Chem Plasma Process 36, 1161–1175 (2016). https://doi.org/10.1007/s11090-016-9704-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-016-9704-7

Keywords

PACS Nos.

Navigation