Skip to main content
Log in

Initial Growth of Functional Plasma Polymer Nanofilms

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

To gain deeper insights into the initial growth mechanism, with respect to functional group density and cross-linking, plasma polymer films (PPFs) were deposited from C2H4/NH3 discharges. Keeping gas phase processes and electrical discharge conditions constant all over the deposition process, the mass deposition rate of the PPF was found to be initially lower and regularly increasing before reaching steady-state conditions after a film thickness of about 5 nm on metal oxide substrates. The first gradient nano-layer, i.e. the first 5 nm deposited, were observed to possess less amino functional groups and to be more cross-linked and thus more stable compared to the film prepared in steady state conditions, in which the uniform film comprises more amino functional groups, yet is less cross-linked and thus less stable. Due to its sticking probability, the substrate thus influences the initial deposition rate. Over plasma exposure time, the substrate becomes covered by an initial layer of PPF and the film-forming species are no longer deposited onto the pristine substrate but onto the already deposited organic polymer film. The preparation of the highly stable functional nanofilm, i.e. the initial PPF layer, can lead to new possible applications and fast deposition processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Yasuda HK (2005) Plasma Process Polym 2:293–304

    Article  CAS  Google Scholar 

  2. Choukourov A, Gordeev I, Arzhakov D, Artemenko A, Kousal J, Kylian O, Slavinska D, Biedermann H (2012) Plasma Process Polym 9:48–58

    Article  CAS  Google Scholar 

  3. Manakhov A, Zajickova L, Elias M, Cechal J, Polcak J, Hnilica J, Bittnerova S, Necas D (2014) Plasma Process Polym 11:532–544

    Article  CAS  Google Scholar 

  4. Daunton C, Smith LE, Whittle JD, Short RD, Steele DA, Michelmore A (2015) Plasma Process Polym 12:817–826

    Article  CAS  Google Scholar 

  5. Carton O, Ben Salem D, Pulpytel J, Arefi-Khonsari F (2015) Plasma Chem Plasma Process 35:819–829

    Article  CAS  Google Scholar 

  6. Drabik M, Kousal J, Celma C, Rupper P, Biederman H, Hegemann D (2014) Plasma Process Polym 11:496–508

    Article  CAS  Google Scholar 

  7. Guimond S, Hanselmann B, Hossain M, Salimova V, Hegemann D (2015) Plasma Process Polym 12:328–335

    Article  CAS  Google Scholar 

  8. Drabik M, Celma C, Kousal J, Biederman H, Hegemann D (2014) Thin Solid Film 573:27–32

    Article  CAS  Google Scholar 

  9. Drabik M, Pesicka J, Biederman H, Hegemann D (2015) Sci Technol Adv Mater 16:025005

    Article  Google Scholar 

  10. Hegemann D, Hanselmann B, Guimond S, Fortunato G, Giraud M-N, Guex AG (2014) Surf Coat Technol 255:90–95

    Article  CAS  Google Scholar 

  11. Hegemann D (2015) Thin Solid Films 581:2–6

    Article  CAS  Google Scholar 

  12. Hegemann D, Hanselmann B, Blanchard N, Amberg M (2014) Contrib Plasma Phys 54:162–169

    Article  CAS  Google Scholar 

  13. Zhang Z, Chen Q, Knoll W, Förch R (2003) Surf Coat Technol 174–175:588–590

    Article  Google Scholar 

  14. Yasuda H, Yu Q (2004) Plasma Chem Plasma Process 24:325–351

    Article  CAS  Google Scholar 

  15. Denis L, Cossement D, Godfroid T, Renaux F, Bittencourt C, Snyders R, Hecq M (2009) Plasma Process Polym 6:199–208

    Article  CAS  Google Scholar 

  16. Hwang S, Seo H, Jeong D-C, Wen L, Han JG, Song C, Kim Y (2015) Sci Rep 5:11201

    Article  Google Scholar 

  17. Vasilev K, Michelmore A, Martinek P, Chan J, Sah V, Griesser HJ, Short RD (2010) Plasma Process Polym 7:824–835

    Article  CAS  Google Scholar 

  18. Guimond S, Schütz U, Hanselmann B, Körner E, Hegemann D (2011) Surf Coat Technol 205:S447–S450

    Article  CAS  Google Scholar 

  19. Grundmeier G, Stratmann M (1999) Thin Solid Films 352:119–127

    Article  CAS  Google Scholar 

  20. Grace JM, Gerenser LJ (2003) J Dispersion Sci Technol 24:305–341

    Article  CAS  Google Scholar 

  21. Michelmore A, Martinek P, Sah V, Short RD, Vasilev K (2011) Plasma Process Polym 8:367–372

    Article  CAS  Google Scholar 

  22. Pedersen RH, Scurr DJ, Roach P, Alexander MR, Gadegaard N (2012) Plasma Process Polym 9:22–27

    Article  CAS  Google Scholar 

  23. Hegemann D, Michlicek M, Blanchard NE, Schütz U, Lohmann D, Vandenbossche M, Zajickova L, Drabik M (2015) Plasma Process Polym. doi:10.1002/ppap.201500078

    Google Scholar 

  24. Trieschmann J, Hegemann D (2011) J Phys D Appl Phys 44:475201

    Article  Google Scholar 

  25. Hegemann D, Körner E, Blanchard N, Drabik M, Guimond S (2012) Appl Phys Lett 101:211603

    Article  Google Scholar 

  26. Hegemann D, Schütz U, Körner E (2011) Plasma Process Polym 8:689–694

    Article  CAS  Google Scholar 

  27. Park SY, Kim N, Kim UY, Hong SI, Sasabe H (1990) Polym J 22:242–249

    Article  CAS  Google Scholar 

  28. Hegemann D (2006) Thin Solid Films 515(4):2173–2178

    Article  CAS  Google Scholar 

  29. Hegemann D, Körner E, Albrecht K, Schütz U, Guimond S (2010) Plasma Process Polym 7:889

    Article  CAS  Google Scholar 

  30. Gleason KK (2010) Plasma Process Polym 7:380–381

    Article  CAS  Google Scholar 

  31. Hegemann D (2013) J Phys D Appl Phys 46:205204

    Article  Google Scholar 

  32. Kurosawa S, Aizawa H, Miyake J, Yoshimoto M, Hilborn J, Abidin Talib Z (2002) Thin Solid Films 407:1–6

    Article  CAS  Google Scholar 

  33. Girard-Lauriault P-L, Dietrich PM, Gross T, Wirth T, Unger WES (2013) Plasma Process Polym 10:388–395

    Article  CAS  Google Scholar 

  34. Hegemann D (2014) In: Cameron D (ed) Comprehensive materials processing, vol 4. Elsevier, Amsterdam, pp 201–228

    Chapter  Google Scholar 

  35. Jeong DC, Wen L, Kim S, Nam JD, Han JG, Song C (2014) Surf Coat Technol 259:27–32

    Article  CAS  Google Scholar 

  36. Girard-Lauriault P-L, Unger WES, Dietrich PM, Holländer A (2015) Plasma Process Polym 12:953–967

    Article  CAS  Google Scholar 

  37. Tanuma S, Powell CJ, Penn DR (2011) Surf Interface Anal 43:689–713

    Article  CAS  Google Scholar 

  38. Lieberman MA, Lichtenberg AJ (2005) Principles of plasma discharges and materials processing, 2nd edn. John, Hoboken (Ch. 1)

    Book  Google Scholar 

  39. Franz G (2009) Low pressure plasmas and microstructuring technology. Springer, Berlin (Ch. 4)

    Book  Google Scholar 

  40. Phelps AV, Petrovic ZL (1999) Plasma Sources Sci Technol 8:R21–R44

    Article  CAS  Google Scholar 

  41. Yasuda H, Ledernez L, Olcaytug F, Urban G (2008) Pure Appl Chem 80:1883–1892

    Article  CAS  Google Scholar 

  42. Kishimoto Y, Hayashi T, Hashimoto M, Ohshima T (1977) J Appl Polym Sci 21:2721–2733

    Article  CAS  Google Scholar 

  43. Yi W, Jeong T, Yu SG, Lee J, Jin S, Heo J, Kim JM (2001) Thin Solid Films 397:170–175

    Article  CAS  Google Scholar 

  44. Bachmann PK, van Elsbergen V, Wiechert DU, Zhong G, Robertson J (2001) Diam Relat Mater 10:809–817

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge that parts of this work have been funded by the Swiss National Science Foundation (SNSF, Bern) under grant no. IZ73Z0_152661 (SCOPES).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marianne Vandenbossche.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vandenbossche, M., Butron Garcia, MI., Schütz, U. et al. Initial Growth of Functional Plasma Polymer Nanofilms. Plasma Chem Plasma Process 36, 667–677 (2016). https://doi.org/10.1007/s11090-015-9690-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-015-9690-1

Keywords

Navigation