Skip to main content
Log in

Why Target Immune Cells for Plasma Treatment of Cancer

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

This paper addresses the challenge of using non-equilibrium plasma as a therapeutic approach for diseases of body systems not readily accessible to plasma-generated factors. The role of plasma stimulation of the immune system is discussed as a conceivable mechanism to deliver effects. This is especially important for treatment of cancers since the pathogenesis and progression of cancers are directly influenced by immune function. By optimizing plasma parameters to induce immunogenic cell death in tumors locally, it is possible to trigger specific, protective immune responses systemically. The observations from in vitro and in vivo investigations on this subject are reviewed here. An in depth understanding of the interaction between plasma components and the cells of the immune system may provide necessary information for use of plasmas in treatment of many systemic diseases. The clinical implications of treating cancers with non-equilibrium plasma are considered. The paper also identifies some hurdles that must be overcome before plasma immunotherapy becomes a clinical reality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Palumbo MO, et al (2013) Systemic cancer therapy: achievements and challenges that lie ahead. Front Pharmacol 4:1–9

    Article  CAS  Google Scholar 

  2. Makkouk A, Weiner GJ (2015) Cancer immunotherapy and breaking immune tolerance: new approaches to an old challenge. Cancer Res 75(1):5–10

    Article  CAS  Google Scholar 

  3. Snook AE et al (2008) Guanylyl cyclase c-induced immunotherapeutic responses opposing tumor metastases without autoimmunity. J Natl Cancer Inst 100(13):950–961

    Article  CAS  Google Scholar 

  4. Witek M et al (2014) Tumor radiation therapy creates therapeutic vaccine responses to the colorectal cancer antigen GUCY2C. Int J Radiat Oncol* Biol* Phys 88(5):1188–1195

    Article  CAS  Google Scholar 

  5. Zitvogel L et al (2008) Immunological aspects of cancer chemotherapy. Nat Rev Immunol 8(1):59–73

    Article  CAS  Google Scholar 

  6. Sun CC et al (2005) Rankings and symptom assessments of side effects from chemotherapy: insights from experienced patients with ovarian cancer. Support Care Cancer 13(4):219–227

    Article  Google Scholar 

  7. Bentzen SM (2006) Preventing or reducing late side effects of radiation therapy: radiobiology meets molecular pathology. Nat Rev Cancer 6(9):702–713

    Article  CAS  Google Scholar 

  8. Yasuda H (2008) Solid tumor physiology and hypoxia-induced chemo/radio-resistance: novel strategy for cancer therapy: nitric oxide donor as a therapeutic enhancer. Nitric Oxide 19(2):205–216

    Article  CAS  Google Scholar 

  9. Fridman G et al (2007) Floating electrode dielectric barrier discharge plasma in air promoting apoptotic behavior in melanoma skin cancer cell lines. Plasma Chem Plasma Process 27(2):163–176

    Article  CAS  Google Scholar 

  10. Kim C-H et al (2010) Induction of cell growth arrest by atmospheric non-thermal plasma in colorectal cancer cells. J Biotechnol 150(4):530–538

    Article  CAS  Google Scholar 

  11. Vandamme M et al (2010) Antitumor effect of plasma treatment on U87 glioma xenografts: preliminary results. Plasma Process Polym 7(3–4):264–273

    Article  CAS  Google Scholar 

  12. Keidar M et al (2011) Cold plasma selectivity and the possibility of a paradigm shift in cancer therapy. Br J Cancer 105(9):1295–1301

    Article  CAS  Google Scholar 

  13. Volotskova O, et al (2012) Targeting the cancer cell cycle by cold atmospheric plasma. Sci Rep 2:1–10

    Article  Google Scholar 

  14. Emmert S et al (2013) Clinical plasma medicine—position and perspectives in 2012: paper of consent, result of the workshop “Clinical Concepts in Plasma Medicine”, Greifswald April 28th, 2012. Clin Plasma Med 1(1):3–4

    Article  Google Scholar 

  15. Utsumi F et al (2013) Effect of indirect nonequilibrium atmospheric pressure plasma on anti-proliferative activity against chronic chemo-resistant ovarian cancer cells in vitro and in vivo. PLoS One 8(12):e81576

    Article  Google Scholar 

  16. Ma Y et al (2014) Non-thermal atmospheric pressure plasma preferentially induces apoptosis in p53-mutated cancer cells by activating ROS stress-response pathways. PLoS One 9(4):e91947

    Article  Google Scholar 

  17. Metelmann H-R et al (2015) Head and neck cancer treatment and physical plasma. Clin Plasma Med 3(1):8

    Article  Google Scholar 

  18. Brullé L et al (2012) Effects of a non thermal plasma treatment alone or in combination with gemcitabine in a MIA PaCa2-luc orthotopic pancreatic carcinoma model. PLoS One 7(12):e52653

    Article  Google Scholar 

  19. Dobrynin D et al (2009) Physical and biological mechanisms of direct plasma interaction with living tissue. New J Phys 11(11):115020

    Article  Google Scholar 

  20. Kalghatgi S et al (2011) Effects of non-thermal plasma on mammalian cells. PLoS One 6(1):e16270

    Article  CAS  Google Scholar 

  21. Lin A et al (2015) Non-equilibrium dielectric barrier discharge treatment of mesenchymal stem cells: charges and reactive oxygen species play the major role in cell death. Plasma Process Polym. doi:10.1002/ppap.201400232

    Google Scholar 

  22. Babaeva NY, Kushner MJ (2013) Reactive fluxes delivered by dielectric barrier discharge filaments to slightly wounded skin. J Phys D Appl Phys 46(2):025401

    Article  Google Scholar 

  23. Graves DB (2014) Reactive species from cold atmospheric plasma: implications for cancer therapy. Plasma Process Polym 11(12):1120–1127

    Article  CAS  Google Scholar 

  24. Fridman A (2008) Plasma chemistry. Cambridge University Press, Cambridge

    Book  Google Scholar 

  25. Lu X, Laroussi M, Puech V (2012) On atmospheric-pressure non-equilibrium plasma jets and plasma bullets. Plasma Sources Sci Technol 21(3):034005

    Article  Google Scholar 

  26. Kubota Y, Ichiki R, Hara T, Yamaguchi N, Takemura Y (2009) Spectroscopic analysis of nitrogen atmospheric plasma jet. J Plasma Fusion Res Ser 8:740–743

    Google Scholar 

  27. Mellman I, Coukos G, Dranoff G (2011) Cancer immunotherapy comes of age. Nature 480(7378):480–489

    Article  CAS  Google Scholar 

  28. Sun C et al (2015) Reactive oxygen species involved in CT26 immunogenic cell death induced by Clostridium difficile toxin B. Immunol Lett 164(2):65–71

    Article  CAS  Google Scholar 

  29. Kroemer G et al (2013) Immunogenic cell death in cancer therapy. Annu Rev Immunol 31:51–72

    Article  CAS  Google Scholar 

  30. Pardoll D (2003) Does the immune system see tumors as foreign or self? Annu Rev Immunol 21(1):807–839

    Article  CAS  Google Scholar 

  31. Fridman WH et al (2012) The immune contexture in human tumours: impact on clinical outcome. Nat Rev Cancer 12(4):298–306

    Article  CAS  Google Scholar 

  32. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674

    Article  CAS  Google Scholar 

  33. Noy R, Pollard JW (2014) Tumor-associated macrophages: from mechanisms to therapy. Immunity 41(1):49–61

    Article  CAS  Google Scholar 

  34. de Visser KE, Eichten A, Coussens LM (2006) Paradoxical roles of the immune system during cancer development. Nat Rev Cancer 6(1):24–37

    Article  Google Scholar 

  35. Partecke LI et al (2012) Tissue tolerable plasma (TTP) induces apoptosis in pancreatic cancer cells in vitro and in vivo. BMC Cancer 12(1):473

    Article  CAS  Google Scholar 

  36. Schlegel J, Köritzer J, Boxhammer V (2013) Plasma in cancer treatment. Clin Plasma Med 1(2):2–7

    Article  Google Scholar 

  37. Walk RM et al (2013) Cold atmospheric plasma for the ablative treatment of neuroblastoma. J Pediatr Surg 48(1):67–73

    Article  Google Scholar 

  38. Crittenden M et al (2015) Current clinical trials testing combinations of immunotherapy and radiation. Semin Radiat Oncol 25(1):54–64

    Article  Google Scholar 

  39. Kohoutova D et al (2015) Esophageal neoplasia arising from subsquamous buried glands after an apparently successful photodynamic therapy or radiofrequency ablation for Barrett’s associated neoplasia. Scand J Gastroenterol 50(11):1–7

    Article  Google Scholar 

  40. Castano AP, Mroz P, Hamblin MR (2006) Photodynamic therapy and anti-tumour immunity. Nat Rev Cancer 6(7):535–545

    Article  CAS  Google Scholar 

  41. Castano AP, Demidova TN, Hamblin MR (2005) Mechanisms in photodynamic therapy: part three—photosensitizer pharmacokinetics, biodistribution, tumor localization and modes of tumor destruction. Photodiagn Photodyn Ther 2(2):91–106

    Article  CAS  Google Scholar 

  42. Apetoh L et al (2007) Toll-like receptor 4–dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nat Med 13(9):1050–1059

    Article  CAS  Google Scholar 

  43. Manda K, et al (2012) Effects of ionizing radiation on the immune system with special emphasis on the interaction of dendritic and T cells. Front Oncol 2:1–9

    Article  Google Scholar 

  44. Kalbasi A et al (2013) Radiation and immunotherapy: a synergistic combination. J Clin Investig 123(7):2756

    Article  CAS  Google Scholar 

  45. Miller V et al (2014) Plasma stimulation of migration of macrophages. Plasma Process Polym 11(12):1193–1197

    Article  CAS  Google Scholar 

  46. Lin A et al (2015) Uniform nanosecond pulsed dielectric barrier discharge plasma enhances anti-tumor effects by induction of immunogenic cell death in tumors and stimulation of macrophages. In: Plasma processes and polymers, Submitted for publication 2015(special issue “Plasma and Cancers II”)

  47. Miller V (2015) Non-thermal plasma as an immunomodulator. In: 5th International symposium on plasma biosciences. Jeju Korea, p 140

  48. Kaushik NK et al (2015) Cytotoxic macrophage released tumor necrosis factor-alpha (TNF-α) as a killing mechanism for cancer cell death after cold plasma activation. J Phys D Appl Phys (submitted)

  49. Miller V, Lin A, Fridman A (2015) Plasma activation of the immune system- new approach for treating cancers. In: 22nd International symposium on plasma chemistry. Antwerp, Belgium

  50. Lin A, et al (2015) Nanosecond pulsed DBD for plasma onco-immunotherapy. In: 22nd International symposium on plasma chemistry. Antwerp, Belgium

  51. Garg AD et al (2010) Immunogenic cell death, DAMPs and anticancer therapeutics: an emerging amalgamation. Biochim Biophys Acta (BBA) Rev Cancer 1805(1):53–71

    Article  CAS  Google Scholar 

  52. Krysko DV et al (2012) Immunogenic cell death and DAMPs in cancer therapy. Nat Rev Cancer 12(12):860–875

    Article  CAS  Google Scholar 

  53. Cruz CM et al (2007) ATP activates a reactive oxygen species-dependent oxidative stress response and secretion of proinflammatory cytokines in macrophages. J Biol Chem 282(5):2871–2879

    Article  CAS  Google Scholar 

  54. Vitiello L et al (2012) Immunoregulation through extracellular nucleotides. Blood 120(3):511–518

    Article  CAS  Google Scholar 

  55. Zhang X, Mosser D (2008) Macrophage activation by endogenous danger signals. J Pathol 214(2):161–178

    Article  CAS  Google Scholar 

  56. Tesniere A et al (2008) Immunogenic cancer cell death: a key-lock paradigm. Curr Opin Immunol 20(5):504–511

    Article  CAS  Google Scholar 

  57. Tesniere A et al (2008) Molecular characteristics of immunogenic cancer cell death. Cell Death Differ 15(1):3–12

    Article  CAS  Google Scholar 

  58. Panaretakis T et al (2009) Mechanisms of pre-apoptotic calreticulin exposure in immunogenic cell death. EMBO J 28(5):578–590

    Article  CAS  Google Scholar 

  59. Basu S et al (2000) Necrotic but not apoptotic cell death releases heat shock proteins, which deliver a partial maturation signal to dendritic cells and activate the NF-κB pathway. Int Immunol 12(11):1539–1546

    Article  CAS  Google Scholar 

  60. Srivastava P (2002) Roles of heat-shock proteins in innate and adaptive immunity. Nat Rev Immunol 2(3):185–194

    Article  CAS  Google Scholar 

  61. Garg AD et al (2012) A novel pathway combining calreticulin exposure and ATP secretion in immunogenic cancer cell death. EMBO J 31(5):1062–1079

    Article  CAS  Google Scholar 

  62. Unanue ER (1984) Antigen-presenting function of the macrophage. Annu Rev Immunol 2(1):395–428

    Article  CAS  Google Scholar 

  63. Guermonprez P et al (2002) Antigen presentation and T cell stimulation by dendritic cells. Annu Rev Immunol 20(1):621–667

    Article  CAS  Google Scholar 

  64. Klebanoff CA et al (2005) Central memory self/tumor-reactive CD8 + T cells confer superior antitumor immunity compared with effector memory T cells. Proc Natl Acad Sci USA 102(27):9571–9576

    Article  CAS  Google Scholar 

  65. Koks CA et al (2015) Newcastle disease virotherapy induces long-term survival and tumor-specific immune memory in orthotopic glioma through the induction of immunogenic cell death. Int J Cancer 136(5):E313–E325

    Article  CAS  Google Scholar 

  66. Keidar M et al (2013) Cold atmospheric plasma in cancer therapya. Phys Plasmas (1994-present) 20(5):057101

    Article  Google Scholar 

  67. Panngom K et al (2013) Differential responses of cancer cell lines to non-thermal plasma from dielectric barrier discharge. Curr Appl Phys 13:S6–S11

    Article  Google Scholar 

  68. Miller V, et al (2015) Plasma stimulation of immune cell function- plasma initiates, biology propagates. In: European cooperation in science and technology. Istanbul, Turkey

  69. Whiteside T (2008) The tumor microenvironment and its role in promoting tumor growth. Oncogene 27(45):5904–5912

    Article  CAS  Google Scholar 

  70. Rabinovich GA, Gabrilovich D, Sotomayor EM (2007) Immunosuppressive strategies that are mediated by tumor cells. Annu Rev Immunol 25:267

    Article  CAS  Google Scholar 

  71. Knutson K, Disis M (2005) Tumor antigen-specific T helper cells in cancer immunity and immunotherapy. Cancer Immunol Immunother 54(8):721–728

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vandana Miller.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miller, V., Lin, A. & Fridman, A. Why Target Immune Cells for Plasma Treatment of Cancer. Plasma Chem Plasma Process 36, 259–268 (2016). https://doi.org/10.1007/s11090-015-9676-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-015-9676-z

Keywords

Navigation