Skip to main content

Advertisement

Log in

Experimental Investigation on the Effect of a Microsecond Pulse and a Nanosecond Pulse on NO Removal Using a Pulsed DBD with Catalytic Materials

  • Review Article
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

In this study, an experimental investigation of the removal of NO from an atmospheric air stream has been carried out with a non-thermal plasma dielectric barrier discharge reactor filled with different catalytic materials. TiO\(_2\), CuO–MnO\(_2\)–TiO\(_2\), CuO–MnO\(_2\)–Al\(_2\)O\(_3\) catalysts were used to study the synergy between the plasma and the catalysts. The NO\(_\mathrm{{x}}\) removal efficiency and by-products formation were studied as a function of energy density, pulse rise time and width using a plasma catalytic configuration. It was observed that the shorter pulses are more efficient for NO\(_\mathrm{{x}}\) removal but at the expense of higher by-products formation such as N\(_2\)O and O\(_3\). A comparison has been made between an in-plasma catalytic configuration and a post-plasma catalytic configuration. Among all the three catalysts that were studied, CuO–MnO\(_2\)–TiO\(_2\) catalyst showed the best performance with respect to the removal efficiency as well as the by-products formation in both the in-plasma and the post-plasma catalytic configuration. In general, the post-plasma configuration showed better results with respect to low by-products formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. European environment agency. http://www.eea.europa.eu/data-and-maps/indicators/transport-emissions-of-air-pollutants-8/transport-emissions-of-air-pollutants-9. Accessed 12 April 2014

  2. European automobile manufacturers association. http://www.acea.be/industry-topics/tag/category/euro-standards. Accessed 12 April 2014

  3. Hammer T, Kappes T, Baldauf M (2004) Plasma catalytic hybrid processes: gas discharge initiation and plasma activation of catalytic processes. Catal Today 89(1):5–14

    Article  CAS  Google Scholar 

  4. Oda T, Kato T, Takahashi T, Shimizu K (1997) Nitric oxide decomposition in air by using non-thermal plasma processing-with additives and catalyst. J Electrostat 42(1):151–157

    Article  CAS  Google Scholar 

  5. Chang JS (2001) Recent development of plasma pollution control technology: a critical review. Sci Technol Adv Mater 2(3):571–576

    Article  CAS  Google Scholar 

  6. Penetrante B, Hsiao M, Merritt B, Vogtlin G, Wan C (1997) Plasma-assisted heterogeneous catalysis for \(\text{NO}_{{\rm x}}\) reduction in lean-burn engine exhaust. technical report, DTIC Document

  7. Penetrante BM, Brusasco RM, Merritt BT, Vogtlin GE (1999) Environmental applications of low-temperature plasmas. Pure Appl Chem 71(10):1829–1835

    Article  CAS  Google Scholar 

  8. Sun M, Ravi V (2010) Role of oxygen in the plasma catalytic removal of \(\text{NO}_{{\rm x}}\). VIVECHAN IJR 1(2):1–9

    Google Scholar 

  9. Beckers FJCM, Hoeben WFLM, Pemen aJM, van Heesch EJM (2013) Low-level \(\text{NO}_{{\rm x}}\) removal in ambient air by pulsed corona technology. J Phys D Appl Phys 46:295201

    Article  Google Scholar 

  10. Neyts E, Bogaerts A (2014) Understanding plasma catalysis through modelling and simulation a review. J Phys D Appl Phys 47(22):224010

    Article  Google Scholar 

  11. Yamamoto T, Okubo M, Hayakawa K, Kitaura K (2001) Towards ideal \(\text{NO}_{{\rm x}}\) control technology using a plasma-chemical hybrid process. IEEE Trans Ind Appl 37(5):1492–1498

    Article  CAS  Google Scholar 

  12. Conrads H, Schmidt M (2000) Plasma generation and plasma sources. Plasma Sour Sci Technol 9(4):441–454

    Article  CAS  Google Scholar 

  13. Tendero C, Tixier C, Tristant P, Desmaison J, Leprince P (2006) Atmospheric pressure plasmas: a review. Spectrochim Acta Part B Atomic Spectrosc 61(1):2–30

    Article  Google Scholar 

  14. Samukawa S, Hori M, Rauf S, Tachibana K, Bruggeman P, Kroesen G, Whitehead JC, Murphy AB, Gutsol AF, Starikovskaia S, Kortshagen U, Boeuf J-P, Sommerer TJ, Kushner MJ, Czarnetzki U, Mason N (2012) The 2012 plasma roadmap. J Phys D Appl Phys 45(25):253001

    Article  Google Scholar 

  15. Whitehead JC (2010) Plasma catalysis: a solution for environmental problems. Pure Appl Chem 82(6):1329–1336

    Article  CAS  Google Scholar 

  16. Chen HL, Lee HM, Chen SH, Chang MB, Yu SJ, Li SN (2009) Removal of volatile organic compounds by single-stage and two-stage plasma catalysis systems: a review of the performance enhancement mechanisms, current status, and suitable applications. Environ Sci Technol 43(7):2216–2227

    Article  CAS  Google Scholar 

  17. Jolibois J, Takashima K, Mizuno A (2012) Application of a non-thermal surface plasma discharge in wet condition for gas exhaust treatment: \(\text{NO}_{{\rm x}}\) removal. J Electrostat 70:300–308

    Article  CAS  Google Scholar 

  18. Yamamoto T, Member S, Yang C-L, Beltran MR, Kravets Z (2000) Plasma-assisted chemical process for \(\text{NO}_{{\rm x}}\) control. IEEE Trans Ind Appl 36(3):923–927

    Article  CAS  Google Scholar 

  19. Miessner H, Francke K-P, Rudolph R (2002) Plasma-enhanced HC-SCR of \(\text{NO}_{{\rm x}}\) in the presence of excess oxygen. Appl Catal B Environ 36:53–62

    Article  CAS  Google Scholar 

  20. McAdams R, Beech P, Shawcross JT (2008) Low temperature plasma assisted catalytic reduction of \(\text{NO}_{{\rm x}}\) in simulated marine diesel exhaust. Plasma Chem Plasma Process 28:159–171

    Article  CAS  Google Scholar 

  21. Tran D, Aardahl C, Rappe K, Park P, Boyer C (2004) Reduction of \(\text{NO}_{{\rm x}}\) by plasma-facilitated catalysis over In-doped \(\gamma\)-alumina. Appl Catal B Environ 48:155–164

    Article  CAS  Google Scholar 

  22. Kim HH, Takashima K, Katsura S, Mizuno A (2001) Low-temperature \(\text{NO}_{{\rm x}}\) reduction processes using combined systems of pulsed corona discharge and catalysts. J Phys D Appl Phys 34(4):604

    Article  CAS  Google Scholar 

  23. Bröer S, Hammer T (2000) Selective catalytic reduction of nitrogen oxides by combining a non-thermal plasma and a \(\text{V}_2\text{O}_5\)-\(\text{WO}_3/\text{TiO}_2\) catalyst. Appl Catal B Environ 28(2):101–111

    Article  Google Scholar 

  24. Oda T, Kato T, Takahashi T, Shimizu K (1998) Nitric oxide decomposition in air by using nonthermal plasma processing with additives and catalyst. IEEE Trans Ind Appl 34(2):268–272

    Article  CAS  Google Scholar 

  25. Puchkarev V, Gundersen M (1997) Energy efficient plasma processing of gaseous emission using a short pulse discharge. Appl Phys Lett 71(23):3364–3366

    Article  CAS  Google Scholar 

  26. Gentile AC, Kushner MJ (1995) Reaction chemistry and optimization of plasma remediation of \(\text{N}_{{\rm x}}\text{O}_{{\rm y}}\) from gas streams. J Appl Phys 78(3):2074–2085

    Article  CAS  Google Scholar 

  27. Oda T (2003) Non-thermal plasma processing for environmental proection: decomposition of dilute VOCs in air. J Electrostat 57(3–4):293–311

    Article  CAS  Google Scholar 

  28. Li J, Ke R, Li W, Hao J (2008) Mechanism of selective catalytic reduction of NO over \(\text{Ag}/\text{Al}_2\text{O}_3\) with the aid of non-thermal plasma. Catal Today 139:49–58

    Article  CAS  Google Scholar 

  29. Nasonova A, Pham HC, Kim D-J, Kim K-S (2010) NO and \(\text{SO}_2\) removal in non-thermal plasma reactor packed with glass beads-\(\text{TiO}_2\) thin film coated by PCVD process. Chem Eng J 156:557–561

    Article  CAS  Google Scholar 

  30. Oda T, Kato T, Takahashi T, Shimizu K (1997) Nitric oxide decomposition in air by using non-thermal plasma processing-with additives and catalyst. J Electrostat 42:151–157

    Article  CAS  Google Scholar 

  31. Jõgi I, Erme K, Haljaste A, Laan M (2013) Oxidation of nitrogen oxide in hybrid plasma-catalytic reactors based on DBD and \(\text{Fe}_2\text{O}_3\). Eur Phys J Appl Phys 61(02):24305

    Article  Google Scholar 

  32. Futamura S, Zhang A, Einaga H, Kabashima H (2002) Involvement of catalyst materials in nonthermal plasma chemical processing of hazardous air pollutants. Catal Today 72(3):259–265

    Article  CAS  Google Scholar 

  33. Fan X, Zhu T, Wang M, Li X (2009) Removal of low-concentration btx in air using a combined plasma catalysis system. Chemosphere 75(10):1301–1306

    Article  CAS  Google Scholar 

  34. Chang C-L, Lin T-S (2005) Elimination of carbon monoxide in the gas streams by dielectric barrier discharge systems with mn catalyst. Plasma Chem Plasma Process 25(4):387–401

    Article  CAS  Google Scholar 

  35. Jarrige J, Vervisch P (2009) Plasma-enhanced catalysis of propane and isopropyl alcohol at ambient temperature on a \(\text{MnO}_2\)-based catalyst. Appl Catal B Environ 90(1):74–82

    Article  CAS  Google Scholar 

  36. Van Durme J, Dewulf J, Sysmans W, Leys C, Van Langenhove H (2007) Efficient toluene abatement in indoor air by a plasma catalytic hybrid system. Appl Catal B Environ 74(1–2):161–169

    Article  Google Scholar 

  37. Subrahmanyam C (2009) Catalytic non-thermal plasma reactor for total oxidation of volatile organic compounds. Indian J Chem 48(August):1062–1068

    Google Scholar 

  38. Morales MR, Barbero BP, Cadús LE (2008) Evaluation and characterization of mn–cu mixed oxide catalysts for ethanol total oxidation: influence of copper content. Fuel 87(7):1177–1186

    Article  CAS  Google Scholar 

  39. Morales MR, Barbero BP, Lopez T, Moreno A, Cadús LE (2009) Evaluation and characterization of mn–cu mixed oxide catalysts supported on TiO2 and ZrO2 for ethanol total oxidation. Fuel 88(11):2122–2129

    Article  CAS  Google Scholar 

  40. Vitello P, Penetrante B, Bardsley J (1994) Simulation of negative-streamer dynamics in nitrogen. Phys Rev E 49(6):5574

    Article  CAS  Google Scholar 

  41. PekárekP S, UsamaP K (2011) Ozone generation by surface dielectric barrier discharge with \(\text{TiO}_2\) photocatalyst. In: 30th ICPIG. pp 10–13

  42. Blin-Simiand N, Tardiveau P, Risacher A, Jorand F, Pasquiers S (2005) Removal of 2-heptanone by dielectric barrier discharges—the effect of a catalyst support. Plasma Process Polym 2(3):256–262

    Article  CAS  Google Scholar 

  43. Ogata A, Saito K, Kim H-H, Sugasawa M, Aritani H, Einaga H (2010) Performance of an ozone decomposition catalyst in hybrid plasma reactors for volatile organic compound removal. Plasma Chem Plasma Process 30(1):33–42

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. R. Chirumamilla.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chirumamilla, V.R., Hoeben, W.F.L.M., Beckers, F.J.C.M. et al. Experimental Investigation on the Effect of a Microsecond Pulse and a Nanosecond Pulse on NO Removal Using a Pulsed DBD with Catalytic Materials. Plasma Chem Plasma Process 36, 487–510 (2016). https://doi.org/10.1007/s11090-015-9670-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-015-9670-5

Keywords

Navigation