Skip to main content
Log in

A Model-Based Comparative Study of HCl and HBr Plasma Chemistries for Dry Etching Purposes

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

The comparative study of HCl and HBr plasma chemistries was carried out using plasma modeling. It was found that both gas systems are characterized by similar reaction schemes and exhibit only the quantitative differences in kinetics of both neutral and charged species. For one and the same ranges of electron temperature and electron density, the important features of the HBr plasma are: (1) higher dissociation degree and Br atom density; (2) higher electronegativity; and (3) higher efficiency of the physical etching pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Sugano T (1990) Applications of plasma processes to VLSI technology. Wiley, New York

    Google Scholar 

  2. Rooth JR (1995) Industrial plasma engineering. IOP Publishing LTD, Philadelphia

    Book  Google Scholar 

  3. Roosmalen AJ, Baggerman JAG, Brader SJH (1991) Dry etching for VLSI. Plenum Press, New York

    Book  Google Scholar 

  4. Pearton SJ, Chakrabarti UK, Lane E, Perley AP, Abernathy CR, Hobson WS, Jones KS (1992) J Electrochem Soc 139:856

    Article  CAS  Google Scholar 

  5. Kuo Y, Tai TL (1998) J Electrochem Soc 145:4313

    Article  CAS  Google Scholar 

  6. Bestwick TD, Oehrlane GS (1990) J Vac Sci Technol, A 8:1696

    Article  CAS  Google Scholar 

  7. Jin W, Vitale SA, Sawin HH (2002) J Vac Sci Technol A 20:2106

    Article  CAS  Google Scholar 

  8. Bazin A, Pargon E, Mellhaoui X, Perret D, Mortini B, Joubert O (2008) In: Advances in resist materials and processing technology XXV. Henderson, CL (ed) Proceedings of the SPIE. vol 6923, p 692337

  9. Pargon E, Menguelti K, Martin M, Bazin A, Chaix-Pluchery O, Sourd C, Derrough S, Lill T, Joubert O (2009) J Appl Phys 105:094902

    Article  Google Scholar 

  10. Lee S, Kuo Y (2002) Jpn J Appl Phys 41:7345

    Article  CAS  Google Scholar 

  11. Kuo Y, Lee S (2000) Jpn J Appl Phys 39:188

    Article  Google Scholar 

  12. Khan FA, Zhou L, Kumar V, Adesida I (2002) J Electrochem Soc 149:G420

    Article  CAS  Google Scholar 

  13. Frank WE, Chabert T (1993) J Electrochem Soc 140:490

    Article  CAS  Google Scholar 

  14. Richter HH, Aminpur MA, Erzgräber HB, Wolff A (1997) Jpn J Appl Phys 36:4849

    Article  CAS  Google Scholar 

  15. Efremov A, Choi B-G, Nahm S, Lee HW, Min N-K, Kwon K-H (2008) J Korean Phys Soc 52:48

    Article  CAS  Google Scholar 

  16. Lee HW, Kim M, Min N-K, Efremov A, Lee C-W, Kwon K-H (2008) Jpn J Appl Phys 47:6917

    Article  CAS  Google Scholar 

  17. Efremov A, Kim Y, Lee H-W, Kwon K-H (2011) Plasma Chem Plasma Proc 31:259

    Article  CAS  Google Scholar 

  18. Smirnov A, Efremov A, Svettsov V, Islyaykin A, In: Valiev KA, Orlikovsky AA (eds) International conference on micro- and nano-electronics 2009, Proceedings of SPIE. vol 7521, p 752108

  19. Smirnov AA, Efremov AM, Svettsov VI (2010) Russ Microlectron 39:418

    Article  CAS  Google Scholar 

  20. Efremov AM, Kim GH, Balashov DI, Kim CI (2006) Vacuum 81:244

    Article  CAS  Google Scholar 

  21. Efremov AM, Svettsov VI, Sitanov DV, Balashov DI (2008) Thin Solid Films 516:3020

    Article  CAS  Google Scholar 

  22. Efremov AM, Smirnov AA, Svettsov VI (2010) High Energy Chem 44:249

    Article  CAS  Google Scholar 

  23. Lee C, Lieberman MA (1995) J Vac Sci Technol, A 13:368

    Article  CAS  Google Scholar 

  24. Ashida S, Lieberman MA (1997) Jpn J Appl Phys 36:854

    Article  CAS  Google Scholar 

  25. Chantry PJ (1987) J Appl Phys 62:1141

    Article  Google Scholar 

  26. Lieberman MA, Lichtenberg AJ (1994) Principles of plasma discharges and materials processing. Wiley, New York

    Google Scholar 

  27. Sugavara M (1998) Plasma etching. Fundamentals and applications. Oxford University Press, New York

    Google Scholar 

  28. Šašić O, Dujko S, Petrović Z (2007) Jpn J Appl Phys 46:3560

    Article  Google Scholar 

  29. Kurepa MV, Babic DS, Belic DS (1981) J Phys B: At Mol Phys 14:375

    Article  CAS  Google Scholar 

  30. Gudmundsson JT (2001) Plasma Sources Sci Technol 10:76

    Article  CAS  Google Scholar 

  31. Morgan WL (1992) Plasma Chem Plasma Proc 12:449

    Article  CAS  Google Scholar 

  32. Efremov AM, Svetsov VI, Balashov DI (1999) Contrib Plasma Phys 39:247

    Article  CAS  Google Scholar 

  33. Tawara H, Itikawa Y, Nishimura H, Yoshino M (1990) J Phys Chem Ref Data 19:617

    Article  CAS  Google Scholar 

  34. Lide DR (1998–1999) Handbook of chemistry and physics. CRC Press, New York

  35. Chen ES, Chen ECM (2003) J Phys Chem A 107:169

    Article  CAS  Google Scholar 

  36. Smedley JE, Haugen HK, Leone SR (1987) J Chem Phys 87:2700

    Article  CAS  Google Scholar 

  37. NIST Chemical Kinetica Database. http://kinetics.nist.gov/kinetics/

  38. Efremov A, Min N-K, Choi B-G, Baek K-H, Kwon K-H (2008) J Electrochem Soc 155:D777

    Article  CAS  Google Scholar 

  39. Corr CS, Despiau-Pujo E, Chabert P, Graham WG, Marro FG, Graves DB (2008) J Phys D Appl Phys 41:185202

    Article  Google Scholar 

  40. Curley GA, Gatilova L, Guilet S, Bouchoule S, Gogna GS, Sirse N, Karkari S, Booth JP (2010) J Vac Sci Technol, A 28:360

    Article  CAS  Google Scholar 

  41. Kota GP, Coburn JW, Graves DB (1998) J Vac Sci Technol, A 16:270

    Article  CAS  Google Scholar 

  42. Dzotsenidze Z, Petviashvili D, Museridze M, Sulaberidze K (2001) Bulletin of the Georgian Academy of Sciences. vol 164

  43. Serdyuk NK, Gutorov VV, Panfilov VN (1981) React Kinet Catal Lett 16:393

    Article  CAS  Google Scholar 

  44. Wood BJ, Wise H (1961) J Phys Chem 65:1976

    Article  CAS  Google Scholar 

  45. Leone SR (1982) J Phys Chem Ref Data 11:953

    Article  CAS  Google Scholar 

  46. Horáček J, Domcke W (1996) Phys Rev A 53:2262

    Article  Google Scholar 

  47. Pless V, Nestmann BM, Peyerimhoff SD (1992) J Phys B: At Mol Opt Phys 25:4649

    Article  CAS  Google Scholar 

  48. Lee C, Graves DB, Lieberman MA (1996) Plasma Chem Plasma Process 16:99

    Article  CAS  Google Scholar 

  49. Efremov AM, Kim DP, Kim C-I (2004) IEEE Trans Plasma Sci 32:1344

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a Korea University Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kwang-Ho Kwon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Efremov, A., Kim, J.H. & Kwon, KH. A Model-Based Comparative Study of HCl and HBr Plasma Chemistries for Dry Etching Purposes. Plasma Chem Plasma Process 35, 1129–1142 (2015). https://doi.org/10.1007/s11090-015-9639-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-015-9639-4

Keywords

Navigation