Skip to main content
Log in

Model of the Plasma Photovoltaic Conversion of Concentrated Solar Radiation: Short-Circuit Current and Open-Circuit Voltage

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

A model of the direct photoelectric conversion of concentrated solar radiation in a plasma ignited in a heat pipe filled with a mixture of sodium vapor and krypton is developed. The model considers the non-homogeneous distribution of the alkali atom density in the heat-pipe volume and the thermionic effect of a cathode. The model treats a hot plasma core in a local thermal equilibrium (LTE) state and takes into account non-equilibrium layers near the converter walls. The model is employed to calculate an open-circuit voltage, a plasma resistance, a short-circuit current, an energy flux of positive ions directed toward the cathode, and a conversion efficiency of the solar radiation. Two different approaches were used to estimate a value of the electron temperature in the ionization non-equilibrium layer near the cathode. We assumed within the framework of an isothermal approximation that the electron temperature in the ionization layer near the cathode is equal to the temperature of the LTE plasma. This isothermal model predicted a rather low value (approximately 3 %) for the conversion efficiency. We found within the framework of a two-temperature model that the reduction of the electron temperature by 20 % compared with the LTE plasma temperature took place at the outer boundary of the ionization layer near the cathode. This non-isothermal model predicts a rather high value (approximately 33 %) for the conversion efficiency for a 300× solar radiation concentration ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Chen CJ (2011) Physics of solar energy. Wiley, New York

    Book  Google Scholar 

  2. Schwede JW, Bargatin I, Riley DC et al (2010) Photon-enhanced thermionic emission for solar concentrator systems. Nat Mater 9:762–767

    Article  CAS  Google Scholar 

  3. Gorbunov NA, Flamant G (2009) Qualitative model of a plasma photoelectric converter. Tech Phys 54(1):72–81

    Article  Google Scholar 

  4. Gorbunov NA, Stacewicz T (2000) Photo EMF observed upon the resonance excitation of sodium vapors. Tech Phys Lett 26(8):654–655

    Article  CAS  Google Scholar 

  5. Gorbunov NA, Stacewicz T (2001) Observation of an electromotive force in a decaying photoresonance plasma of sodium vapors. High Temp 39(4):623–625

    Article  CAS  Google Scholar 

  6. Gorbunov NA, Flamant G (2004) Analytical model of a plasma photoconverter. Tech Phys 49(11):1491–1495

    Article  CAS  Google Scholar 

  7. Gorbunov NA, Grochola A, Kruk P, Pietruczuk A, Stacewicz T (2002) Studies of electron energy distribution in plasma produced by a resonant laser pulse. Plasma Sour Sci Technol 11(4):492–497

    Article  CAS  Google Scholar 

  8. Dunning GJ, Palmer AJ (1981) Toward a high-temperature solar electric converter. J Appl Phys 52(12):7086–7091

    Article  CAS  Google Scholar 

  9. Leonov G, Rudenko AA, Starostin AN et al (2002) Infrared absorption in dense sodium vapor. J Exp Theor Phys 95(2):242–254

    Article  CAS  Google Scholar 

  10. Gorbunov NA, Kopitov AN (2009) Visual study of the microdrop component in sodium vapor-inert gas mixtures in a heat pipe. Opt Spectrosc 106(4):495–498

    Article  CAS  Google Scholar 

  11. Rokhlin GN (1991) Discharge sources of light. Energoatomizdat, Moscow (in Russian)

  12. Gorbunov NA, Flamant G (2010) Plasma photoelectric conversion of concentrated solar radiation. In: Proceedings of the SolarPACES conference, Perpignan, France, pp 1–8

  13. Raizer YP (1991) Gas discharge physics. Springer, Berlin

    Book  Google Scholar 

  14. Baksht FG et al (1973). In: Moyzhes, Pikus (eds) Thermionic converters and low temperature plasma. Acad. Sci. USSR, Moscow (in Russia); (English ed. By L.K. Hansen, Ed. Nat. Tech. Inform. Service, Springfield, VA, DOE-TR-1, 1978

  15. Benilov MS (2008) Understanding and modeling plasma–electrode interaction in high-pressure arc discharges: a review. J Phys D Appl Phys 41:1–30; 144001

  16. Golant VE, Zhilinskii AP, Sakharov SA (1980) Fundamentals of plasma physics. Wiley, New York

    Google Scholar 

  17. Lawless JL, Lam SH (1986) An analytical model of thermionic discharge. J Appl Phys 59(6):1875–1889

    Article  Google Scholar 

  18. Fortov VE, Yakubov IT, Khrapak AG (2006) Physics of strongly coupled plasma. Clarendon Press, Oxford

    Book  Google Scholar 

  19. Pack JL, Voshall RE, Phelps AV, Kline LE (1992) Longitudinal electron diffusion coefficients in gases: noble gases. J Appl Phys 71:5363–5371

    Article  CAS  Google Scholar 

  20. Ignjatovic LM, Mihajlov AA (1997) Interaction of electrons with atoms in ground and excited states; potential of interaction, momentum transfer cross-sections. Contrib Plasma Phys 37:309–326

    Article  CAS  Google Scholar 

  21. Lewist HW, Reitz JR (1960) Efficiency of the plasma thermocouple. J Appl Phys 31(4):723–727

    Article  Google Scholar 

  22. Rozhansky AV, Tsendin LD (2001) Transport phenomena in partially ionized plasma. Taylor & Francis, London

    Google Scholar 

  23. Charrada K, Zissis G, Aubes M (1996) Two-temperature, two-dimensional fluid modeling of mercury plasma in high-pressure lamps. J Phys D Appl Phys 29:2432–2438

    Article  CAS  Google Scholar 

  24. Almeida NA, Benilov MS, Naidis GV (2008) Unified modelling of near-cathode plasma layers in high-pressure arc discharges. J Phys D Appl Phys 41:1–26; 245201

  25. Benilov MS (1997) Analysis of thermal non-equilibrium in the near-cathode region of atmospheric-pressure arcs. J Phys D Appl Phys 30:3353–3359

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the French “Investments for the Future” program managed by the National Agency for Research under Contract ANR-10-LABX-22-01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Gorbunov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gorbunov, N.A., Flamant, G. Model of the Plasma Photovoltaic Conversion of Concentrated Solar Radiation: Short-Circuit Current and Open-Circuit Voltage. Plasma Chem Plasma Process 35, 799–817 (2015). https://doi.org/10.1007/s11090-015-9624-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-015-9624-y

Keywords

Navigation