Skip to main content

Advertisement

Log in

Three-Phase AC Arc Plasma Systems: A Review

  • Review Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

Most arc plasma systems are based on DC plasma technologies. However AC plasma systems can offer significant advantages versus DC plasma systems particularly in terms of efficiency, cost and reliability. They are also likely to overcome some of the limits of classical DC systems for some specific large scale high power applications. This paper presents a literature review of three-phase AC plasma systems which have been developed by the most active research groups on multi-phase AC plasma systems in the United States, Norway, Germany, Russia, France, and Japan for about 50 years.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Boulos MI, Fauchais P, Pfender E (1994) Thermal plasmas: fundamentals and applications, vol 1. Plenum Press, New York

    Book  Google Scholar 

  2. Solonenko OP (2003) Thermal plasma torches and technologies, vol 15. Cambridge International Science Publishing, Cambridge

    Google Scholar 

  3. Rehmet C, Fabry F, Rohani V, Cauneau F, Fulcheri L (2014) A comparison between MHD modeling and experimental results in a 3-Phase AC arc plasma torch. Influ Electrode Tip Geom Plasma Chem Plasma Process 34(4):975–996

    Article  CAS  Google Scholar 

  4. Finkelburg W, Maeker H (1956) Handb D. Phys. 22:254 Springer, Berlin

    Google Scholar 

  5. Loh O (1959) Arch Electrotech 44:203

    Article  Google Scholar 

  6. Anderson J (1976) Gasdynamic Lasers: An Introduction. Academic Press, New York

    Google Scholar 

  7. Koroteev AS, Mironov VM, Svirchuk YS (1993) Plasma generators: designs, characteristics, calculation. Mashinostroenie, Moscow (in Russian)

  8. Rutberg P (2009) Physics and technology of high-current discharges in dense gas media and flows. Nova Science Publishers Inc, New York

    Google Scholar 

  9. Philips RL (1967) Theory of the non-stationary arc column. Brit J Appl Phys 18:65–78

    Article  Google Scholar 

  10. Geister DE (1969) A high pressure AC arc heater system. In: AIAA 4th aerodynamic testing conference, Cincinnati, OHIO, 28–30 Apr, paper no. 69–348, pp 1–12

  11. Geister DE (1967) Analysis and design of a high pressure AC arc heater, contract no AF 33(615)-1326, project no. 7065, Aerospace Research Laboratories Office of Aerospace Research United States Air Force Wright-Patterson Air Force Base, Ohio, pp 1–107

  12. Geister DE (1964) Three-phase AC arc heater, contract no. AF 33(657)-8630, project no. 7065, Aerospace Research Laboratories Office of Aerospace Research United States Air Force Wright-Patterson Air Force Base, Ohio, pp 1–139

  13. Larsen HL (1996) AC electric arc models for a laboratory set-up and a silicon metal furnace, Dr. Ing. Thesis dissertation, Department of Metallurgy, The Norwegian University of Science and Technology, Trondheimpp 1–244

  14. Larsen HL, Saevarsdottir G, Bakken JA (1997) Simulation of AC arcs in the silicon metal furnace. In: 54th electric furnace conference, 9–12 Dec, Dallas—TX, proceedings Vol 54, pp 157–168

  15. Larsen HL, Bakken JA (1997) Modelling of industrial AC arcs conference: 4th international thermal plasma processes, Athens, Greece Date, 15–18 Jul, 1996. Fauchais (ed) Progress in plasma processing of materials, pp 837–844

  16. Larsen HL, Arntsberg AE, Bakken JA (1994) A numerical Model for an AC electric arc, proceedings of the international symposium on heat and mass transfer under plasma conditions, Cesme, Turkey, 4–8 July, pp 69–77

  17. Larsen HL, Bakken JA (1994) A time dependent numerical Model for an AC Electric Arc. In: Proceedings of the 3rd european congress on thermal plasma processes, Aachem, Germany, Sept 19–21, pp 137–144

  18. Larsen HL, Gu, L. Bakken JA (1994) A numerical model for an AC arc in the silicon metal furnace. In: Proceedings of the 7th international ferroalloys congress (INFACON-7), Trondheim, Norway, 11–14 June, pp 517–527

  19. Larsen HL, Hildal A, Sevastyanenko VG, Bakken JA (1995) Numerical modelling of AC electric arcs. In: Proceedings of the 12th international symposium on plasma chemistry, Minneapolis USA, 21–25 August, pp 2339–2344

  20. Saevarsdottir G (2002) High current AC arcs in silicon and ferrosilicon furnaces, Dr. Ing. Thesis dissertation, Department of Metallurgy, The Norwegian University of Science and Technology Trondheim, pp 1–247

  21. Saevarsdottir G, Larsen HL, Bakken JA (1999) Modelling of industrial AC-arcs high temperature material processes Vol 3 Issue 1, pp 1–15

  22. Saevarsdottir G, Larsen HL, Bakken JA (1997) Simple model for AC arcs in electro-metallurgical furnaces.In: 13th International symposium on plasma chemistry (ISPC 13), Beijing China, 18–22 August. In proceedings pp 308–313. Pekin University Press, Beijing

  23. Saevarsdottir G, Larsen HL, Bakken JA (1998) Modelling of AC arcs in three-phase submerged arc furnaces. In: Proceedings of the 8th international ferro-alloys congress (INFACON-8), Beijing, 1–7 June, pp 317–322

  24. Saevarsdottir G, Thoresn M, Bakken JA (1998) Improved channel arc model for high current AC arcs. In: 5th European conference on thermal plasma processes (TPP5), St Petersburg, 13–16 July

  25. Saevarsdottir G, Larsen HL, Bakken JA (1999) Modelling of industrial AC-Arcs. J High Temp Mater Process 3(1):1–15

    Article  CAS  Google Scholar 

  26. Bakken JA, Saevarsdottir G (2001) High power AC arcs in metallurgical furnaces. 6th European conference on thermal plasma processes (TPP6) Strasbourg, refereed proceedings progress in plasma processing of materials. Published in Journal of High Temperature Material Processes, Begell House, pp 149–171

  27. Saevarsdottir G, Bakken JA, Sevastyanenko VG, Liping G (2001) High power AC Arcs in metallurcical furnaces. J. High Temp Mater Process 5:21–44

    Article  Google Scholar 

  28. Bonet C (1973) Contribution to the theoretical study of a refractory spheroidal particle evaporation in a thermal plasma (in French), State Doctorate es Sciences Physiques defended on 28 April, 1973, CNRS, France (199 pages), CNRS registration no. A.O. 8262. Because this reference is not available in the Internet, the author (Fulcheri L) is willing to send it to interested reader upon request

  29. Bonet C (1980) Thermal plasma technology for processing of refractory materials. Pure Appl Chem 52(7):1707–1720

    Article  CAS  Google Scholar 

  30. Bonet C (1976) Thermal plasma processing. Chem Eng Prog 78(12):63–69

    Google Scholar 

  31. Bonet C, Foex M, Munz R et al (1976) Behavior of various metals used as electrodes in 3-phase ac plasma generator. J Phys d Appl Phys 9(12):L141–L147

    Article  CAS  Google Scholar 

  32. Gold D, Bonet C, Chauvin G, and Mathieu AC (1981) Spheroidisation of alumino-silicate particles in a three phase ac plasma furnace. In: 4th International symposium on plasma chemistry ISPC 4, Zurich, pp 265–270

  33. Bonet C, Gold D, Chauvin G, Delmas R, Petit A, Moisset J (1979) A three phase rotating plasma furnace for processing of hydraulic materials. In: 5th International symposium on plasma chemistry ISPC 5, Edinburgh, pp 173–178

  34. Bonet C, Lamos J, Foex M (1970) High power steady state plasma flows (in French), Entropie no. 34–35. Because this reference is not available in the Internet, the author (Fulcheri L) is willing to send it to interested reader upon request, pp 2–13

  35. Anonymous (1986) The graphite electrodes electro-burner (in French), Journée d’étude du 30 Octobre 1986, Thermal engineering society (Société Française des Thermiciens), pp 1–13. Because this reference is not available in the Internet, the author (Fulcheri L) is willing to send it to interested reader upon request

  36. Reybillet M (1986) Bertin electro-burner: description and mockup tests (in French), Journée d’étude du 30 Octobre 1986, Thermal engineering society (Société Française des Thermiciens), 5 pages. Because this reference is not available in the Internet, the author (Fulcheri L) is willing to send it to interested reader upon request

  37. Badie JM (1986) The Odeillo’ 3-phase AC plasma torch: history, operation and results (in French), Journée d’étude du 30 Octobre 1986, Thermal engineering society (Société Française des Thermiciens), 7 pages. Because this reference is not available in the Internet, the author (Fulcheri L) is willing to send it to interested reader upon request

  38. Fulcheri L, Schwob Y (1995) From methane to hydrogen, carbon black and water. Int J Hydrog Energy 20(3):197–202

    Article  CAS  Google Scholar 

  39. Fulcheri L, Probst N, Flamant G, Fabry F, Grivei E, Bourrat X (2002) Plasma processing: a step towards the production of new grades of carbon black. Carbon 40:169–176

    Article  CAS  Google Scholar 

  40. Fulcheri L, Schwob Y, Flamant G (1997) Comparison between new carbon nanostructures produced by plasma with industrial carbon black grades. Journal of Physics III 7:491–503

    CAS  Google Scholar 

  41. Fulcheri L, Schwob Y (1994) Comparison between two carbon nanostructures furnace and acetylene blacks. High Temp Chem Process 3:575–583

    CAS  Google Scholar 

  42. Gruenberger T, Gonzalez-Aguilar J, Fabry F, Fulcheri L, Grivei E, Probst N, Flamant G, Okuno H, Charlier JC (2004) Production of carbon nanotubes and other nanostructures via continuous 3-phase AC plasma processing. Fuller Nanotub Carbon Nanostruct 12(3):571–581

    Article  CAS  Google Scholar 

  43. Okuno H, Grivei E, Fabry F, Gruenberger T, Gonzalez-Aguilar J, Palchinenko A, Fulcheri L, Probst N, Charlier JC (2004) Synthesis of carbon nanotubes and nano-necklaces by thermal plasma process. Carbon 42:2543–2549

    Article  CAS  Google Scholar 

  44. Fabry F (1999) Study of a plasma process for the synthesis of carbon black by high temperature hydrocarbons pyrolysis and product characterization (in French), PhD thesis defended on 6 July, 1999, University of Perpignan 251 pp

  45. Ravary B (1998) Thermal and Hydrodynamic modelling of a 3-phase plasma reactor, contribution to the development of an industrial process for the production of carbon black (in French), PhD thesis dissertation, defended on December 17, 1998, Ecole des Mines de Paris 156 pp

  46. Ravary B, Fulcheri L, Bakken JA, Flamant G, Fabry F (1999) Influence of the Electromagnetic forces on momentum and heat transfert in a 3-Phase AC plasma reactor. Plasma Chem Plasma Process 19(1):69–89 Plenum Press

    Article  CAS  Google Scholar 

  47. Ravary B, Fulcheri L, Fabry F and Flamant G (1997) Analysis of the behavior of the arcs in a three phase AC plasma reactor. In: Proceedings ISPC-13 (13th international symposium on plasma chemistry), 18–22 August, 1997, Beijing, China, Vol. I, edited by C.K. Wu, Peking University Press, pp 219–225

  48. Fulcheri L (2003) Carbon Nanostructures by plasma (in French), Habilitation degree dissertation (HDR) defended on March 21, 2003. Université de Perpignan http://tel.archives-ouvertes.fr/tel-00550503

  49. Rehmet C (2013) Theoretical and experimental study of a 3-phase AC plasma torch associated to a gasification process (in French), PhD thesis dissertation defended on 23 September, 2013, MINES-ParisTech (196 pages)

  50. Rehmet C, Rohani V, Cauneau F, Fulcheri L (2013) 3D unsteady state MHD modeling of a 3-phase AC hot graphite electrodes plasma torch. Plasma Chem Plasma Process 33:491–515

    Article  CAS  Google Scholar 

  51. Rehmet C, Fabry F, Rohani V, Cauneau F, Fulcheri L (2014) A comparison between MHD modeling and experimental results in a 3-Phase AC arc plasma torch. Influ electrode tip geom Plasma Chem Plasma Process 34(4):975–996

    Article  CAS  Google Scholar 

  52. Rehmet C, Fabry F, Rohani V, Cauneau F, Fulcheri L (2013) High speed video camera and electrical signal analyses of arcs behavior in a 3-Phase AC arc plasma torch. Plasma Chem Plasma Process 33:779–796

    Article  CAS  Google Scholar 

  53. Rehmet C, Fabry F, Rohani V, Cauneau F, Fulcheri L (2014) Unsteady state analysis of free-burning arcs in a 3-phase AC plasma torch. Comparison between parallel and coplanar configurations, Plasma Sources Science and Technology, 23 065011 12 pp

  54. Rutberg PG, Safronov AA, Popov SD, Surov AV, and Nakonechnyi GV (2006) Multiphase Electric-Arc AC Plasma Generators for Plasma Technologies High Temperature. vol. 44 no. 2, 2006, pp 199–205. Translated from Teplofizika Vysokikh Temperatur, vol. 44 no. 2, pp 205–211. Original Russian Text Copyright © 2006 by Rutberg P, Safronov AA, Popov SD, Surov AV, and Nakonechnyi GV

  55. Rutberg PG (2003) Plasma pyrolysis of toxic waste. Plasma Phys Control Fusion 45:957–969

    Article  CAS  Google Scholar 

  56. Rutberg PG, Bratsev AN, Kuznetsov VA, Popov VE, Ufimtsev AA, Shtengel SV (2011) On efficiency of plasma gasification of wood residues. Biomass Bioenergy 35:495–504

    Article  CAS  Google Scholar 

  57. Rutberg P, Kuznetsov VA, Popov VE, Bratsev AN, Popov SD, Surov AV (2013) Improvements of biomass gasification process by plasma technologies. Green Energy Technol 115:261–287

    Google Scholar 

  58. Rutberg P, Bratsev AN, Kuznetsov VA, Popov VE, Ufimtsev AA, Shtengel SV (2011) On efficiency of plasma gasification of wood residues. Biomass Bioenergy 35:495–504

    Article  CAS  Google Scholar 

  59. Rutberg PG, Safronov AA, Popov SD, Surov AV, Nakonechny GV (2005) Multiphase stationary plasma generators working on oxidizing media. Plasma Phys Control Fusion 47:1681–1696

    Article  CAS  Google Scholar 

  60. Rutberg P, Popov SD, Surov AV, Serba EO, Nakonechny GV, Spodobin VA, Pavlov AV, Surov AV (2012) The investigation of an electric arc in the long cylindrical channel of the powerful high-voltage AC plasma torch, 12th High-tech plasma processes conference (HTPP-12). J Phys: Conf Ser 406:012028

    Google Scholar 

  61. Rutberg P, Kuznetsov VA, Serba EO, Popov SD, Surov AV, Nakonechny GV, Nikonov AV (2013) Novel three-phase steam–air plasma torch for gasification of high-caloric Waste. Appl Energy 108:505–514

    Article  CAS  Google Scholar 

  62. Hackmann J, Bebber H (1992) Electrode erosion in high power thermal arcs. Pure Appl Chem 64:653–656

    Article  CAS  Google Scholar 

  63. Bebber H (1994) Scaling-up of plasma processes. High Temp Chem Process 3:665–676

    Google Scholar 

  64. Neuschütz D (1996) Plasma processing of dusts and residues. Pure Appl Chem 68:1159–1165

    Article  Google Scholar 

  65. Tanaka M, Tsuruoka Y, Liu Y, Watanabe T (2011) Investigation of in-flight melting behaviour of granulated glass raw material by multi-phase AC arc plasma and hybrid plasma, IOP Conference Series: Materials Science and Engineering, 18 112010

  66. Tanaka M, Tsuruoka Y, Liu Y, Matsuura T, Watanabe T (2011) Stability analysis of multi-phase AC arc discharge for in-flight glass melting. Current Appl Phys 11(5):S35–S39

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Professor Jean-Marie Baronnet and Professor Philip Rutberg for their very valuable and kind support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurent Fulcheri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fulcheri, L., Fabry, F., Takali, S. et al. Three-Phase AC Arc Plasma Systems: A Review. Plasma Chem Plasma Process 35, 565–585 (2015). https://doi.org/10.1007/s11090-015-9619-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-015-9619-8

Keywords

Navigation