Skip to main content
Log in

New Methods to Look at an Old Technology: Innovations to Diagnose Thermal Plasmas

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

The use and development of diagnostics for thermal plasmas is motivated by the industrial importance of thermal plasma applications like welding, cutting or thermal spraying. While the physical fundamentals of plasma diagnostics were introduced decades ago new technologies allow to perform a more detailed analysis of the mentioned applications with increased spatial and temporal resolution, enabling the investigation of complex processes thereby moving the focus from pure plasma to plasma-material diagnostics. An attempt is made to demonstrate current and future possibilities provided by technical progress using “old physics” with the help of few examples. The examples introduced here focus mostly on welding applications and include the use of high-speed cameras for the spectrally resolved analysis of plasma radiation and two-color pyrometry. In addition the use of Thomson scattering in gas metal arc welding is proposed as well as the use of magnetic field measurements for non-intrusive current density measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Iwansson K, Sinapius G, Hoormaert W (eds) (1999) Measuring current, voltage and power, handbook of sensors and actuator 7. Elsevier, Amsterdam

    Google Scholar 

  2. Morrison R (2009) Grounding and Shielding techniques, 4th edn. Wiley-Interscience, NY

    Google Scholar 

  3. Prehm J, Hartz K (2006) Diagnostics in thermal spraying processes. In: Bach FW, Laarmann A, Wenz T (eds) Modern surface technology. Wiley-VCH, Weinheim, pp 191–204

    Chapter  Google Scholar 

  4. Reisgen U et al (2014) Online-Schmelzbaddiagnostik zum Überwachen der Qualität und Vermeiden von Fehlern beim Lichtbogenschweißen. Schweißen und Schneiden 66:243–249 (in German)

    CAS  Google Scholar 

  5. Mirapeix J, Ruiz-Lombera R, Valdiande JJ, Rodriguez-Cobo L, Anabitarte F, Cobo A (2011) Defect detection with CCD-spectrometer and photodiode-based arc-welding monitoring systems. J. Mater. Process. Technol. 211:2132–2139

    Article  CAS  Google Scholar 

  6. Chen WLT, Heberlein J, Pfender E (1994) Diagnostics of a thermal plasma jet by optical emission spectroscopy and enthalpy probe measurements. Plasma Chem. Plasma Process. 14:317–332

    Article  CAS  Google Scholar 

  7. Griem HR (1997) Principles of plasma spectroscopy. Cambridge University Press, Cambridge

    Book  Google Scholar 

  8. Boselli M, Colombo V, Ghedini E, Gherardi M, Sanibondi P (2013) Two-temperature modelling and optical emission spectroscopy of a constant current plasma arc welding process. J Phys D Appl Phys 46:224009

    Article  Google Scholar 

  9. Kurucz RL, Bell B (1995) Atomic line data. Kurucz CD-ROM no 23. Smithsonian Astrophysical Observatory, Cambridge

    Google Scholar 

  10. Murphy AB (2001) Thermal plasmas in gas mixtures. J Phys D Appl Phys 34:R151

    Article  CAS  Google Scholar 

  11. Tanaka M, Tashiro S, Tsujimura Y (2013) Visualizations and Predictions of Welding Arcs. In: DebRoy T, David SA, DuPont J, Koseki T, Bhadeshia HK (eds) Proceedings of the 9th International Conference on Trends in Welding Research, June 4-8, 2012. Illinois, Chicago, pp 685–688

    Google Scholar 

  12. Bachmann B, Kozakov R, Gött G, Ekkert K, Bachmann JP, Marques JL, Schöpp H, Uhrlandt D, Schein J (2013) High-speed three-dimensional plasma temperature determination of axially symmetric free-burning arcs. J Phys D Appl Phys 46:125203

    Article  Google Scholar 

  13. Jiang W, Gao Y, Wan X, Xie W, Wang J, Dong X (2011) Diagnostics of three-dimensional temperature distribution of ar arc plasma by spectrum tomography technique. IEEE Trans Plasma Sci 39:1855–1860

    Article  Google Scholar 

  14. Sheffield J, Froula D, Glenzer SH, Luhmann NC Jr (2010) Plasma scattering of electromagnetic radiation: theory and measurement techniques, 2nd edn. Elsevier, Amsterdam

    Google Scholar 

  15. Salpeter EE (1961) Plasma density fluctuations in a magnetic field. Phys Rev 122:1663

    Article  Google Scholar 

  16. Press WH, Flannery BP, Teukolsky SA, Vetterling WT (1994) Numerical recipes. Cambridge University Press, Cambridge

    Google Scholar 

  17. Tomita K, Yoshitake S, Uchino K, Takenaka D, Toda H, Hikita M, Suzuki K (2013) Measurements of electron density and electron temperature of arc discharge plasmas containing metallic vapors using laser Thomson scattering. IEEJ Trans Fundam Mater 133:458–464

    Article  Google Scholar 

  18. Kozakov R, Gött G, Schöpp H, Uhrlandt D, Schnick M, Häßler M, Füssel U, Rose S (2013) Spatial structure of the arc in a pulsed GMAW process. J Phys D Appl Phys 46:224001

    Article  Google Scholar 

  19. DeWitt DP, Nutter GD (eds) (1989) Theory and practice of radiation thermometry. Wiley-Interscience, NY

    Google Scholar 

  20. Hofmeister WH, Bayuzick RJ, Robinson MB (1989) Noncontact temperature measurement of a falling drop. Int J Thermophys 10:279–292

    Article  CAS  Google Scholar 

  21. Mishin J, Vardelle M, Lesinski J, Fauchais P (1987) Two-colour pyrometer for the statistical measurement of the surface temperature of particles under thermal plasma conditions. J Phys E: Sci Instrum 20:620–625

    Article  CAS  Google Scholar 

  22. Siewert E, Schein J, Forster G (2013) Determination of enthalpy, temperature, surface tension and geometry of the material transfer in PGMAW for the system argon–iron. J Phys D Appl Phys 46:224008

    Article  Google Scholar 

  23. Hlína J, Šonský J (2010) Time-resolved tomographic measurements of temperatures in a thermal plasma jet. J Phys D Appl Phys 43:055202

    Article  Google Scholar 

  24. Kühn-Kauffeldt M, Marques JL, Schein J (2015) Thomson scattering diagnostics of steady state and pulsed welding processes without and with metal vapor. J Phys D Appl Phys 48:012001

    Article  Google Scholar 

  25. Fincke JR (1996) Advanced diagnostic techniques for thermal plasmas. Pure. Appl. Chem. 68:1001–1006

    Article  CAS  Google Scholar 

  26. Murphy AB (2002) Electron heating in the measurement of electron temperature by Thomson scattering: are thermal plasmas thermal? Phys Rev Lett 89:025002

    Article  CAS  Google Scholar 

  27. Dzierżȩga K, Zawadzki W, Pokrzywka B, Pellerin S (2006) Experimental investigations of plasma perturbation in Thomson scattering applied to thermal plasma diagnostics. Phys Rev E 74:026404

    Article  Google Scholar 

  28. Schein J, Campbell KM, Prasad RR, Binder R, Krishnan M (2002) Radiation hard diamond laser beam profiler with subnanosecond temporal resolution. Rev Sci Instrum 73:18–22

    Article  CAS  Google Scholar 

  29. Kühn-Kauffeldt M, Marques JL, Forster G, Schein J (2013) Electron temperature and density measurement of tungsten inert gas arcs with ar-he shielding gas mixture. J Instrum 8:C10017

    Article  Google Scholar 

  30. Hutchinson IH (2005) Principles of plasma diagnostics, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  31. Schein J, Richter M, Landes KD, Forster G, Zierhut J, Dzulko M (2008) Tomographic investigation of plasma jets produced by multielectrode plasma torches. JTST 17:338–343

    Article  CAS  Google Scholar 

  32. http://www.omega.com/literature/transactions/volume1/emissivitya.html

  33. Cremers DA, Radziemski LJ (2006) Handbook of laser-induced breakdown spectroscopy. Wiley, NY

    Book  Google Scholar 

  34. Batrakov A, Jüttner B, Popov S, Proskurovsky D, Vogel N (2003) Resonant atomic interfero- and shadowgraphy of vacuum arc with gallium cathode. IEEE Trans Plasma Sci 31:864–868

    Article  CAS  Google Scholar 

  35. Birks LS, Friedman H (1946) Particle Size determination from X-ray line broadening. J Appl Phys 17:687–692

    Article  CAS  Google Scholar 

  36. Elmer JW, Wong J, Ressler T (2000) In-situ observations of phase transformations during solidification and cooling of austenitic stainless steel welds using time-resolved x-ray diffraction. Scripta Mater 43:751–757

    Article  CAS  Google Scholar 

  37. Glenzer SH, Redmer R (2009) X-ray Thomson scattering in high energy density plasmas. Rev Mod Phys 81:1625

    Article  CAS  Google Scholar 

  38. Benilov MS (2008) Understanding and modelling plasma–electrode interaction in high-pressure arc discharges: a review. J Phys D Appl Phys 41:144001

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Dr. Joachim Heberlein (1939-2014) for leading the way in thermal plasma diagnostics. The development of many diagnostics mentioned here was funded in part by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) Grant SCHE 428/10-1 und SCHE 428/8-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Schein.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schein, J., Hartz-Behrend, K., Kirner, S. et al. New Methods to Look at an Old Technology: Innovations to Diagnose Thermal Plasmas. Plasma Chem Plasma Process 35, 437–453 (2015). https://doi.org/10.1007/s11090-014-9604-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-014-9604-7

Keywords

Navigation