Skip to main content
Log in

Multi-Component Diffusion Coefficients in Nitrogen Plasma Under Thermal Equilibrium and Non-equilibrium Conditions

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

Multi-component diffusion coefficients are calculated for a seven species model of nitrogen plasma under thermal non-equilibrium following the first order perturbation technique of Chapman and Enskog. Binary, thermal, thermal ambipolar, general and general ambipolar diffusion coefficients are presented over electron temperatures ranging from 300 to 50,000 K and thermal non-equilibrium parameter (Te/Th) ranging from 1 to 5. Considering large volume of data, binary, general and general ambipolar diffusion coefficients are presented only for atmospheric pressure. Thermal and thermal ambipolar diffusion coefficients are presented for pressures ranging from 0.1 to 2 atm. The results are compared with published experimental and theoretical data. Necessary electronic levels, associated transition data and collision integrals are collected from recent literature. Details of behaviour of each of the coefficients are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Colombo V, Ghedini E, Sanibondi P (2009) J Phys D Appl Phys 42(055213):1–12

    Google Scholar 

  2. Oh SM, Park DW (1998) Thin Solid Films 316:189–194

    Article  CAS  Google Scholar 

  3. Ageorges H, Megy S, Chang K, Baronnet JM, Williams JK, Chapman C (1993) Plasma Chem Plasma Process 13:613–632

    Article  CAS  Google Scholar 

  4. Chang Y, Young RM, Pfender E (1987) Plasma Chem Plasma Process 7:299–316

    Article  CAS  Google Scholar 

  5. Moura FJ, Munz RJ (1997) J Am Chem Soc 80:2425–2428

    CAS  Google Scholar 

  6. Sackheim RL (2006) J Propuls Power 22:1310–1333

    Article  CAS  Google Scholar 

  7. Wang HX, Geng JY, Chen X, Pan WX, Murphy AB (2010) Plasma Chem Plasma Process 30:707–731

    Article  CAS  Google Scholar 

  8. Kim S, Heberlein J, Lindsay J, Peters J (2010) J Phys D Appl Phys 43(505202):1–11

    Google Scholar 

  9. Murphy AB, Arundell CJ (1994) Plasma Chem Plasma Process 14:451–490

    Article  CAS  Google Scholar 

  10. Murphy AB (1995) Plasma Chem Plasma Process 15:279–301

    Article  CAS  Google Scholar 

  11. Ghorui S, Heberlein JVR, Pfender E (2008) Plasma Chem Plasma Process 28:553–582

    Article  CAS  Google Scholar 

  12. Colombo V, Ghedini E, Sanibondi P (2008) Prog Nucl Energy 50:921–933

    Article  CAS  Google Scholar 

  13. Ghorui S, Das AK (2012) J Phys Conf Ser 406(012012):1–8

    Google Scholar 

  14. Wang W, Rong M, Yan JD, Wu Y (2012) IEEE Trans Plasma Sci 40:980–989

    Article  CAS  Google Scholar 

  15. Wang W, Rong M, Yan JD, Murphy AB, Spencer JW (2011) Phys Plasmas 18(113502):1–18

    Google Scholar 

  16. Ramshaw JD (1990) J Non-euilib Thermodyn 15:295–300

    CAS  Google Scholar 

  17. Ramshaw JD, Chang CH (1991) Plasma Chem Plasma Process 11:395–402

    Article  Google Scholar 

  18. Ramshaw JD, Chang CH (1993) Plasma Chem Plasma Process 13:489–498

    Article  CAS  Google Scholar 

  19. Ramshaw JD (1993) J Non-euilib Thermodyn 18:121–134

    CAS  Google Scholar 

  20. Ramshaw JD, Chang CH (1996) J Non-euilib Thermodyn 21:223–232

    CAS  Google Scholar 

  21. Ramshaw JD (1996) J Non-euilib Thermodyn 21:233–238

    CAS  Google Scholar 

  22. Mostaghimi J, Proulx P, Boulos MI (1987) J Appl Phys 61:1753–1760

    Article  CAS  Google Scholar 

  23. Ghorui S, Heberlein JVR, Pfender E (2007) J Phys D Appl Phys 40:1966–1976

    Article  CAS  Google Scholar 

  24. Baeva M, Kozakov R, Gorchakov S, Uhrlandt D (2012) Plasma Sour Sci Technol 21(055027):1–13

    Google Scholar 

  25. Boselli M, Colombo V, Ghedini E, Gherardi M, Sanibondi P (2013) J Phys D Appl Phys 46(224009):1–11

    Google Scholar 

  26. FLUENT© 6.1 (2003) User’s Guide. Fluent Inc, Lebanon

    Google Scholar 

  27. Ghorui S, Heberlein JVR, Pfender E (2007) Plasma Chem Plasma Process 27:267–291

    Article  CAS  Google Scholar 

  28. Tanaka Y, Sakuta T (2002) J Phys D Appl Phys 45:468–476

    Article  Google Scholar 

  29. Murphy AB (2012) Chem Phys 398:64–72

    Article  CAS  Google Scholar 

  30. Murphy AB (1993) Phys Rev E 48:3594–3603

    Article  CAS  Google Scholar 

  31. Murphy AB (1998) J Phys D Appl Phys 31:3383–3390

    Article  CAS  Google Scholar 

  32. Hirschfelder JO, Curtiss CF, Bird RB (1964) Molecular theory of gases and liquids, 2nd edn. Wiley, New York

    Google Scholar 

  33. Li HP, Chen X (2001) Chin Phys Lett 18:547–549

    Article  Google Scholar 

  34. Devoto RS (1966) Phys Fluids 9:1230–1240

    Article  CAS  Google Scholar 

  35. Devoto RS (1967) Phys Fluids 10:2105–2112

    Article  CAS  Google Scholar 

  36. Herzberg G (1939) Molecular spectra and molecular structure I. Diatomic molecules. Prentice-Hall Inc, New York

    Google Scholar 

  37. Huber KP, Herzberg G (1979) Molecular spectra and molecular structure: IV. constants of diatomic molecules. Van Nostrand Reinhold Co, New York

    Book  Google Scholar 

  38. JANAF Thermochemical Tables (1965)

  39. Moore CE (1949) Atomic energy levels, circular 467, vol I. US National Bureau of Standards, Washington, DC

    Google Scholar 

  40. NIST ASD Team NIST atomic spectra database (version 3.1.5) (2008) Y Ralchenko, AE Kramida, J Reader, National Institute of Standards and Technology, Gaithersburg, MD, http://physics.nist.gov/asd3 [date accessed]

  41. Kovitya P (1985) IEEE Trans Plasma Sci 13:587–594

    Article  Google Scholar 

  42. Chapman S, Cowling TG (1952) The mathematical theory of non-uniform gases. Cambridge University Press, Cambridge

    Google Scholar 

  43. Ferziger JH, Kaper HG (1972) Mathematical theory of transport processes in gases. North-Holland, London

    Google Scholar 

  44. Capitelli M, Gorse C, Longo S (2000) J Thermo Phys Heat Transfer 14:259–268

    Article  CAS  Google Scholar 

  45. Leonas VB (1973) Soviet Physics Uspekhi 15:266–280

    Article  Google Scholar 

  46. Capitelli M, Devoto RS (1973) Phys Fluids 16:1835–1841

    Article  CAS  Google Scholar 

  47. Ghorui S, Das AK (2013) Phys Plasmas 20(093504):1–8

    Google Scholar 

  48. Selle S, Riedel U (1999) Ann NY Acad Sci 891:72–80

    Article  CAS  Google Scholar 

  49. Cubley SJ, Mason EA (1975) Phys Fluids 18:1109–1111

    Article  CAS  Google Scholar 

  50. Yun KS, Mason EA (1962) Phys Fluids 5:380–386

    Article  CAS  Google Scholar 

  51. Levin E, Patridge H, Stallcop JR (1990) J Thrmophys 4:469–477

    Article  CAS  Google Scholar 

  52. Capitelli M, Devoto RS (1973) Phys Fluids 16:1835–1841

    Google Scholar 

  53. Gupta RN, Yos JM, Thomson RA, Lee KM (1990) NASA Reference publication 1232. NASA Langley Research Center, Hampton, VA

  54. Yos JM (1963) Technical Memorandum RAD-TM-63-7. AVCO Corporation, Wilmington, MA

Download references

Acknowledgments

The authors wish to thank Dr. L.M. Gantayet, Director, BTDG, BARC for his encouragement and support. One of the authors (S. Ghorui) is thankful to Prof. E. Pfender and Prof. J.V.R. Heberlein for many useful discussions on the subject during his post-doctoral studies at the University of Minnesota.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Ghorui.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meher, K.C., Tiwari, N., Ghorui, S. et al. Multi-Component Diffusion Coefficients in Nitrogen Plasma Under Thermal Equilibrium and Non-equilibrium Conditions. Plasma Chem Plasma Process 34, 949–974 (2014). https://doi.org/10.1007/s11090-014-9541-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-014-9541-5

Keywords

Navigation