Skip to main content
Log in

Measurement of Ozone Production in Non-thermal Plasma Actuator Using Surface Dielectric Barrier Discharge

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

Plasma actuators for flow control are intensively studied, but the production of ozone by the surface dielectric barrier discharge used in the actuators has never been quantified. Since ozone is harmful to human health, it is important to quantify its production for an application of this type of actuator on a land vehicle. This paper describes an experimental study to measure the concentration of ozone produced by an actuator with different parameters: amplitude and frequency of the applied high voltage, and the electrode configuration (shape, spacing and length). The results show that, under our experimental conditions, the production of ozone is directly proportional to the power dissipation. The production rate was measured at 21 g/kWh. Although the rate is much lower than that of an industrial ozonizer, it is still far from being negligible and should be taken into account for the future application of these actuators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Moreau E (2007) Airflow control by non-thermal plasma actuators. J Phys D Appl Phys 40(3):605–636

    Article  CAS  Google Scholar 

  2. Roth JR, Sherman DM, Wilkinson SP (1998) AIAA Paper 98-0328, In: Proceedings of the 36th AIAA Aerospace Sciences Meeting and Exhibit

  3. Roth JR, Sherman DM, Wilkinson SP (2000) AIAA J 38(7):1166–1172

    Article  CAS  Google Scholar 

  4. Enloe CL, McLaughlin TE, Vandyken RD, Kachner KD, Jumper EJ, Corke TC (2004) AIAA J 42(3):589–594

    Article  Google Scholar 

  5. Enloe CL, McLaughlin TE, Vandyken RD, Kachner KD, Jumper EJ, Corke TC, Post M, Haddad O (2004) AIAA J 42(3):595–604

    Article  Google Scholar 

  6. Caruana D, Hollenstein C, Boeuf JP, Gleyzes C, Tropea C, Moreau E, Leyland P, Rogier F, Kok J, Choi KS, Molton P, Séraudie A, Zhang X, Ott P, Barricau P, Donelli R (2011) Aerodays 2011, 20th March–1st April, Madrid, Spain (document available at http://www.plasmaero.eu/)

  7. Léger L, Moreau E, Artana G, Touchard G (2001) Influence of a DC corona discharge on the airflow along an inclined flat plate. J Electrostat 51–52:300–306

    Article  Google Scholar 

  8. Magnier P, Hong D, Leroy-Chesneau A, Bauchire J-M, Hureau J (2007) Control of separated flows with the ionic wind generated by a DC corona discharge. Exp Fluids 42(5):815–825

    Article  Google Scholar 

  9. Pons J, Moreau E, Touchard G (2005) Asymmetric surface dielectric barrier discharge in air at atmospheric pressure: electrical properties and induced airflow characteristics. J Phys D 38:3636–3642

    Article  Google Scholar 

  10. Corke TC, Post ML, Orlov DM (2008) Single dielectric barrier discharge plasma enhanced aerodynamics: physics, modeling and applications. Exp Fluids 46(1):1–26

    Article  Google Scholar 

  11. Boucinha V, Weber R, Kourta A (2011) Drag reduction of a 3D bluff body using plasma actuators. Int J Aerodyn 1(3/4):262–281

    Article  Google Scholar 

  12. Kogelschatz U (2003) Dielectric-barrier discharges: their history, discharge physics, and industrial applications. Plasma Chem Plasma Process 23(1):1–46

    Article  CAS  Google Scholar 

  13. The European Parliament and Council, Directive 2002/3/CE relating to ozone in ambient air, OJ L67, 9 March 2002, pp 14–30

  14. Chang MB, Wu SJ (1997) Experimental study on ozone synthesis via dielectric barrier discharges. Ozone-Sci Eng 19:241–254

    Article  CAS  Google Scholar 

  15. Chen HL, Lee HM, Chang MB (2006) Enhancement of energy yield for ozone production via packed-bed reactors. Ozone Sci Eng 28(2):111–118

    Article  CAS  Google Scholar 

  16. Bénard N, Moreau (2012) E EHD force and electric wind produced by surface dielectric barrier discharge plasma actuators used for airflow control. In: 6th AIAA flow control conference, New Orleans, Louisiana, AIAA Paper 2012-3136

  17. Simek M, Pekarek S, Prukner V (2010) Influence of power modulation on ozone production using an ac surface dielectric barrier discharge in oxygen. Plasma Chem Plasma Process 30:607–617

    Article  CAS  Google Scholar 

  18. Simek M, Pekarek S, Prukner V (2012) Ozone production using a power modulated surface dielectric barrier discharge in dry synthetic air. Plasma Chem Plasma Process 32:734–754

    Article  Google Scholar 

  19. Pekarek S (2012) Experimental study of surface dielectric barrier discharge in air and its ozone production. J Phys D: Appl Phys 45(7):075201

    Article  Google Scholar 

  20. Kobayashi H, Tandou T, Nagaishi H, Suzuki K, Negishi N (2012) Decrease in ozone density of atmospheric surface-discharge plasma source. Jpn J Appl Phys 51(8):08HC04

    Article  Google Scholar 

  21. Dong B, Bauchire JM, Pouvesle JM, Magnier P, Hong D (2008) Experimental study of a DBD surface discharge for the active control of subsonic airflow. J Phys D Appl Phys 41(15):155201

    Article  Google Scholar 

  22. Roth JR, Dai X (2006) Optimization of the aerodynamic plasma actuator as an electrohydrodynamic (EHD) electrical device, 44th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada

  23. Audier P, Leroy A, Hong D (2012) Unsteady forcing of a post-stall flow over a NACA0012 airfoil by a surface DBD actuator, 6th Flow Control Conference, AIAA-2012-3052, New Orleans, Louisiana

  24. Joussot R, Leroy A, Weber R, Rabat H, Loyer S, Hong D (2013) Plasma morphology and induced airflow characterization of a DBD actuator with serrated electrode. J Phys D: Appl Phys 46(12):125204

    Article  Google Scholar 

  25. Magnier P, Hong D, Dong B, Hureau J (2008) Action of a pulsed DBD actuator on a slow jet. J Electrost 66:369

    Article  Google Scholar 

  26. Starikovskii AY, Nikipelov AA, Nudnova MM, Roupassov DV (2009) SDBD plasma actuator with nanosecond pulse-periodic discharge. Plasma Source Sci Technol 18:034015

    Article  Google Scholar 

  27. Nishihara M, Takashima K, Rich JW, Adamovich IV (2011) Mach 5 bow shock control by a nanosecond pulse surface dielectric barrier discharge. Phys Fluids 23:066101

    Article  Google Scholar 

  28. Bénard N, Zouzou N, Claverie A, Sotton J, Moreau E (2012) Optical visualization and electrical characterization of fast-rising pulsed dielectric barrier discharge for airflow control applications. J Appl Phys 111:033303

    Article  Google Scholar 

  29. Wagner H-E, Brandenburg R, Kozlov KV, Sonnenfeld A, Michel P, Behnke JF (2003) The barrier discharge: basic properties and applications to surface treatment. Vacuum 71:417–436

    Article  CAS  Google Scholar 

  30. Laroussi M, Schoenbach KH, Kogelschatz U, Vidmar RJ, Kuo S, Schmidt M, Behnke JF, Yukimura K, Stoffels E (2005) Current applications of atmospheric pressure air plasma. In: Becker KH, Kogelschatz U, Schoenbach KH, Barker RJ (eds) Non-equilibrium air plasma at atmospheric pressure. IOP, Bristol, Philadelphia

    Google Scholar 

  31. Anderson R, Roy S (2006) Preliminary experiments of barrier discharge plasma actuators using dry and humid air, 44th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada

  32. Benard N, Balcon N, Moreau E (2009) Electric wind produced by a surface dielectric barrier discharge operating over a wide range of relative humidity, 47th AIAA Aerospace Sciences Meeting Including The New Horizons Forum and Aerospace Exposition, Orlando, Florida

  33. Audier P, Hong D, Rabat H, Bauchire JM, Leroy A (2012) Study of a plasma actuator operating in a controlled atmosphere. High Volt Eng 38(Suppl):400–403

    Google Scholar 

Download references

Acknowledgments

The authors would like to express their sincere appreciation for the funding provided by the French Government via the PHC Orchid project N°25289NJ and by the National Science Council of the Republic of China under grant numbers of NSC- 100-2911-I-008-502.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Hong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hong, D., Rabat, H., Bauchire, J.M. et al. Measurement of Ozone Production in Non-thermal Plasma Actuator Using Surface Dielectric Barrier Discharge. Plasma Chem Plasma Process 34, 887–897 (2014). https://doi.org/10.1007/s11090-014-9527-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-014-9527-3

Keywords

Navigation