Skip to main content
Log in

Thermophysical Properties of High-Temperature Reacting Mixtures of Carbon and Water in the Range 400–30,000 K and 0.1–10 atm. Part 1: Equilibrium Composition and Thermodynamic Properties

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

This paper is devoted to the calculation of the chemical equilibrium composition and thermodynamic properties of reacting mixtures of carbon and water at high temperature. Equilibrium particle concentrations and thermodynamic properties including mass density, molar weight, entropy, enthalpy and specific heat at constant pressure, sonic velocity, and heat capacity ratio are determined by the method of Gibbs free energy minimization, using species data from standard thermodynamic tables. The calculations, which assume local thermodynamic equilibrium, are performed in the temperature range from 400 to 30,000 K for pressures of 0.10, 1.0, 3.0, 5.0 and 10.0 atm. The properties of the reacting mixture are affected by the possible occurrence of solid carbon formation at low temperature, and therefore attention is paid to the influence of the carbon phase transition by comparing the results obtained with and without considering solid carbon formation. The results presented here clarify some basic chemical process and are reliable reference data for use in the simulation of plasmas in reacting carbon and water mixtures together with the need of transport coefficients computation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Belluci S (2005) Carbon nanotubes: physics and applications. Phys Status Solidi C 2:34–47

    Article  ADS  Google Scholar 

  2. Hsin YL, Hwang KC, Chen FR, Kai JJ (2001) Production and in situ metal filling of carbon nanotubes in water. Adv Mater 13:830–833

    Article  Google Scholar 

  3. Sano N, Wang H, Alexandrou I, Chhowalla M, Teo KB, Amaratunga GAJ (2002) Properties of carbon onions produced by an arc discharge in water. J Appl Phys 92:2783–2788

    Article  ADS  Google Scholar 

  4. Lange H, Sioda M, Huczko A, Zhu YQ, Kroto HW, Walton DRM (2003) Nanocarbon production by arc discharge in water. Carbon 41:1617–1623

    Article  Google Scholar 

  5. Sano N, Wang H, Chhowalla M, Alexandrou I, Amaratunga GAJ (2001) Synthesis of carbon ‘onions’ in water. Nature 414:506–507

    Article  ADS  Google Scholar 

  6. Antisari MV, Marazzi R, Krsmanovic R (2003) Synthesis of multiwall carbon nanotubes by electric arc discharge in liquid environments. Carbon 41:2393–2401

    Article  Google Scholar 

  7. Zhu HW, Li XS, Jiang B, Xu CL, Zhu YF, Wu DH, Chen XH (2002) Formation of carbon nanotubes in water by the electric-arc technique. Chem Phys Lett 366:664–669

    Article  ADS  Google Scholar 

  8. Sano N, Kawanami O, Charinpanitkul T, Tanthapanichakoonc W (2008) Study on reaction field in arc-in-water to produce carbon nano-materials. Thin Solid Films 516:6694–6698

    Article  ADS  Google Scholar 

  9. Charles S, Korman S (1973) Synthesis of hydrocarbons by the high intensity arc. Prepr Pap Am Chem Soc Div Fuel Chem 18:71–100

    Google Scholar 

  10. Richardson WH Jr (1998) Electric arc material processing system. US Patent 5,792,325

  11. Richardson WH Jr (2001) Fuel gas production by underwater arcing. US Patent 6,299,738

  12. Tremblay D, Kaliaguinel S (1972) Reaction of water vapour with carbon vapour in a high-intensity arc. Ind Eng Chem Process Des Dev 3:265–271

    Article  Google Scholar 

  13. Wang WZ, Rong MZ, Murphy AB, Wu Y, Spencer JW, Yan JD, Fang MTC (2011) Thermophysical properties of carbon–argon and carbon–helium plasmas. J Phys D Appl Phys. Accepted

  14. Coufal O (2007) Composition and thermodynamic properties of thermal plasma up to 50 Kk. J Phys D Appl Phys 40:3371–3385

    Article  ADS  Google Scholar 

  15. Flanagan G (1986) Reactions of atomic carbon with water M. S. Thesis Auburn University, USA

  16. Ahmed SN, McKee ML, Shevlin PB (1983) An experimental and ab initio study of the addition of atomic carbon to water. J Am Chem Soc 105:3942–3947

    Article  Google Scholar 

  17. André P, Aubreton J, Clain S (2010) Transport coefficients in thermal plasma. Applications to Mars and Titan atmospheres. Eur Phys J D 57:227–234

    Article  ADS  Google Scholar 

  18. Dorofeeva OV, Gurvich LV (1992) Thermodynamic properties of linear carbon chain molecules with conjugated triple bonds part 2 free radicals CnH (n = 2–12) and CnN (n = 2–11). Thermochim Acta 197:53–68

    Article  Google Scholar 

  19. Huang JW, Graham WRM (1990) Fourier transform infrared study of tricarbon hydride radicals trapped in Ar at 10 K. J Chem Phys 93:1583–1596

    Article  ADS  Google Scholar 

  20. Shen LN, Doyle TJ, Graham WRM (1990) Fourier transform spectroscopy of C4H (butadiynyl) in Ar at 10 K: C–H and C≡C stretching modes. J Chem Phys 93:1597–1603

    Article  ADS  Google Scholar 

  21. McBride BJ, Gordon S (1992) Computer program for calculating and fitting thermodynamic functions. NASA RP-1271

  22. Gordon S, McBride BJ (1999) Thermodynamic data to 20,000 K for monatomic gases. NASA TP 1999-208523

  23. Moore CE (1949) Atomic energy levels circular 467, vol 1. US National Bureau of Standards, Washington, DC

    Google Scholar 

  24. Moore CE (1952) Atomic energy levels circular 467, vol 2. US National Bureau of Standards, Washington, DC

    Google Scholar 

  25. Chase MW, Davies CA Jr (1998) NIST-JANAF thermochemical tables, 4th edn. American Institute of Physics for the National Institute of Standards and Technology, New York

    Google Scholar 

  26. Křenek P (2008) Thermophysical properties of H2O–Ar plasmas at temperatures 400–50,000 K and pressure 0.1 MPa. Plasma Chem Plasma Process 28:107–122

    Article  Google Scholar 

  27. Gordon S, McBride BJ (1971) Computer program for calculation of complex chemical equilibrium composition, rocket performance, incident and reflected shocks, and chapman jouguet detonations. NASA publication SP-273

  28. Murphy AB (2001) Thermal plasmas in gas mixtures. J Phys D Appl Phys 34:151–173

    Article  ADS  Google Scholar 

  29. Rochette D, Bussière W, André P (2004) Composition, enthalpy, and vaporization temperature calculation of Ag–SiO2 plasmas with air in the temperature range from 1,000 to 6,000 K and for pressure included between 1 and 50 bars. Plasma Chem Plasma Process 24:475–492

    Article  Google Scholar 

  30. Coufal O, Živný O (2011) Composition and thermodynamic properties of thermal plasma with condensed phases. Eur Phys J D 61:131–151

    Article  ADS  Google Scholar 

  31. Fauchais P, Boulos MI, Pfender E (1994) Thermal plasmas-fundamentals and applications, vol 1. New York, Plenum

    Google Scholar 

  32. Kovitya P (1985) Physical properties of high-pressure plasmas of hydrogen and copper in the temperature range 5,000 K to 30,000K. IEEE Trans Plasma Sci 13:587–594

    Article  ADS  Google Scholar 

  33. D’Angola A, Colonna G, Gorse C, Capitelli M (2008) Thermodynamic and transport properties in equilibrium air plasmas in a wide pressure and temperature range. Eur Phys J D 46:129–150

    Article  ADS  Google Scholar 

  34. Živný O (2009) Composition and thermodynamic functions of non-ideal plasma. Eur Phys J D 54:349–367

    Article  ADS  Google Scholar 

  35. Atkins PW, de Paula J (2006) Physical chemistry, 8th edn. Oxford University Press, Oxford

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Chinese Government Scholarship program for postgraduates and Dual Collaborative PhD Degree Program between Xi’an Jiaotong University and University of Liverpool.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Zong Wang or Ming Zhe Rong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, W.Z., Murphy, A.B., Yan, J.D. et al. Thermophysical Properties of High-Temperature Reacting Mixtures of Carbon and Water in the Range 400–30,000 K and 0.1–10 atm. Part 1: Equilibrium Composition and Thermodynamic Properties. Plasma Chem Plasma Process 32, 75–96 (2012). https://doi.org/10.1007/s11090-011-9327-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-011-9327-y

Keywords

Navigation