Skip to main content
Log in

Influence of Gas Entry Point on Plasma Chemistry, Ion Energy and Deposited Alumina Thin Films in Filtered Cathodic Arc

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

The effect of gas entry point on the plasma chemistry, ion energy distributions and resulting alumina thin film growth have been investigated for a d.c. cathodic arc with an aluminum cathode operated in an oxygen/argon atmosphere. Ions of aluminum, oxygen and argon, as well as ions originating from the residual gas are investigated, and measurements for gas entry at both the cathode and close to the substrate are compared. The latter was shown to result in higher ion flux, lower levels of ionised residual gas, and lower ion energies, as compared to gas inlet at the cathode. These plasma conditions that apply when gas entry at the substrate is used result in a higher film deposition rate, less residual gas incorporation, and more stoichiometric alumina films. The results show that the choice of gas entry point is a crucial parameter in thin film growth using reactive PVD processes such as reactive cathodic arc deposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Schneider JM, Sproul WD, Voevodin AA, Matthews A (1997) J Vac Sci Technol A 15:1084

    Article  ADS  Google Scholar 

  2. Serra E, Benamati G, Ogorodnikova OV (1998) J Nucl Mater 255:105

    Article  ADS  Google Scholar 

  3. Pflitsch C, Muhsin A, Bergmann U, Atakan B (2006) Surf Coat Technol 201:73

    Article  Google Scholar 

  4. Sosniak J (1966) J Vac Sci Technol 4:87

    Article  ADS  Google Scholar 

  5. Schneider JM, Larsson K, Lu J, Olsson E, Hjörvarsson B (2002) Appl Phys Lett 80:1144

    Article  ADS  Google Scholar 

  6. Anders A, Anders S, Jüttner B, Bötticher W, Lück H, Schröder G (1992) IEEE Trans Plasma Sci 20:466

    Article  ADS  Google Scholar 

  7. Brown IG (1994) Rev Sci Instrum 65:3061

    Article  ADS  Google Scholar 

  8. Greene JE, Barnett SA, Sundgren J-E, Rocket A (1989) In: Itoh (ed) Ion beam assisted thin film growth, Chapter 5. Elsevier, Amsterdam

  9. Rosen J, Widenkvist E, Larsson K, Kreissig U, Mráz S, Martinez C, Music D, Schneider JM (2006) Appl Phys Lett 88:191905

    Article  ADS  Google Scholar 

  10. Rosen J, Larsson K, Schneider JM (2005) J Phys Condens Matter 17:L137

    Article  ADS  Google Scholar 

  11. Rosen J, Anders A, Mraz S, Schneider JM (2005) J Appl Phys 97:103306

    Article  ADS  Google Scholar 

  12. Schneider JM, Anders A, Brown IG, Hjörvarsson B, Hultman L (1999) Appl Phys Lett 75:612

    Article  ADS  Google Scholar 

  13. Spädtke P, Emig H, Wolf BH, Oks E (1994) Rev Sci Instrum 65:3113

    Article  ADS  Google Scholar 

  14. Rosen J, Anders A, Hultman L, Schneider JM (2003) J Appl Phys 94:1414

    Article  ADS  Google Scholar 

  15. Ivanov I, Ljungcrantz H, Håkansson G, Petrov I, Sundgren J-E (1997) Surf Coat Technol 92:150

    Article  Google Scholar 

  16. Yang L, Zou J, Cheng Z (1997) IEEE trans Plasma Sci 25:700

    Article  ADS  Google Scholar 

  17. Bilek MMM, Martin PJ, McKenzie DR (1998) J Appl Phys 83:2965

    Article  ADS  Google Scholar 

  18. Tarrant RN, Bilek MMM, Oates TWH, Pigott J, McKenzie DR (2002) Surf Coat Technol 156:110

    Article  Google Scholar 

  19. Chhowalla M (2003) Appl Phys Lett 83:1542

    Article  ADS  Google Scholar 

  20. Rosen J, Anders A, Mraz S, Atiser A, Schneider JM (2006) J Appl Phys 99:123303

    Article  ADS  Google Scholar 

  21. Strauss GN and Pulker HK (2002) Proceedings of the Fourth International Conference on Coatings on Glass. Braunschweig, Germany

  22. Rosen J, Mráz S, Kreissig U, Music D, Schneider JM (2005) Plasma Chem Plasma Proc 25:303

    Article  Google Scholar 

  23. Randhawa H (1989) J Vac Sci Technol A 7:2346

    Article  ADS  Google Scholar 

  24. Bolt H, Koch F, Rodet JL, Karpov D, Menzel S (1999) Surf Coat Technol 116:956

    Article  Google Scholar 

  25. Zhao ZW, Tay BK, Lau SP, Xiao CY (2003) J Vac Sci Technol A 21:906

    Article  ADS  Google Scholar 

  26. Li Q, Yu Y-H, Bhatia CS, Marks LD, Lee SC, Chung YW (2000) J Vac Sci Technol A 18:2333

    Article  ADS  Google Scholar 

  27. Brill R, Koch F, Mazurelle J, Levchuk D, Balden M, Yamada-Takamura Y, Maier H, Bolt H (2003) Surf Coat Technol 174–175:606

    Article  Google Scholar 

  28. Kyrylov O, Kurapov D, Schneider JM (2005) Appl Phys A 80:1657

    Article  ADS  Google Scholar 

  29. McCaffrey JP (1991) Ultramicroscopy 38:149

    Article  Google Scholar 

  30. Rosen J, Anders A, Hultman L, Schneider JM (2004) J Appl Phys 96:4793

    Article  ADS  Google Scholar 

  31. Lide DR (ed) (2000) Handbook of chemistry and physics, 81st edn. CRC, Boca Raton, FL

    Google Scholar 

  32. Honkala K, Laasonen K (2000) Phys Rev Lett 84:705

    Article  ADS  Google Scholar 

  33. Boxman RL, Sanders D, Martin PJ (1995) Handbook of vacuum arc science and technology. William Andrew Publishing, Noyes

    Google Scholar 

  34. Schnider JM, Anders A, Hjörvarsson B, Hultman L (2000) Appl Phys Lett 76:1531

    Article  ADS  Google Scholar 

  35. Schneider JM, Hjörvarsson B, Wang X, Hultman L (1999) Appl Phys Lett 75:3476

    Article  ADS  Google Scholar 

  36. Smirnov BM (2000) Phys Scr 61:595

    Article  ADS  Google Scholar 

  37. Chapman B (1980) Glow discharge processes. Wiley, New York

    Google Scholar 

  38. Phelps AV (1991) J Phys Chem Ref Data 20:557

    Article  ADS  Google Scholar 

  39. Liberman MA, Lichtenberg AJ (1994) Principles of plasma discharges and materials processing. Wiley, New York

    Google Scholar 

  40. Houska J, Warschkow O, Bilek MMM, McKenzie DR, Vlcek J, Potocky S (2006) J Phys Condens Matter 18:2337

    Article  ADS  Google Scholar 

Download references

Acknowledgments

J. R. acknowledges support from the Welch and Hans Werthén foundations. Project funding from the Australian Research Council is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Rosen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rosen, J., Persson, P.O.Å., Ionescu, M. et al. Influence of Gas Entry Point on Plasma Chemistry, Ion Energy and Deposited Alumina Thin Films in Filtered Cathodic Arc. Plasma Chem Plasma Process 27, 599–608 (2007). https://doi.org/10.1007/s11090-007-9088-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-007-9088-9

Keywords

Navigation