Skip to main content
Log in

Influence of the Slurry Thickness and Heat Treatment Parameters on the Formation of Aluminium Diffusion Coating

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

Formation of the FeAl3 or Fe2Al5 phase during the aluminization of iron-based alloys causes detrimental behaviour of the material due to the brittleness of these phases and the different coefficient of thermal expansion between the base material and the resulting diffusion coating. In order to control the microstructure of the produced diffusion zone and its evolution, two different slurry thicknesses (30–50 and 100–150 µm) using high-purity aluminium spherical particles and three different heat treatments times (5, 10 and 20 h) were tested over ferritic–martensitic P92 steel. After the heat treatment, iron–aluminide phases rich in aluminium content were formed. After 1350 hours of exposure in air at 650 °C, it was found that for the coatings in the range of 30–50 µm neither FeAl3 nor Fe2Al5 phase remained in the diffusion coating, while Fe2Al5 did remain in those coatings in the range of 100–150 µm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. A. Agüero, R. Muelas, M. Gutierrez, R. Van Vulpen, S. Osgerby and J. P. Banks, Surface and Coatings Technology 201, 6253 (2007).

    Article  Google Scholar 

  2. R. Roussel, V. Kolarik, M. Juez Lorenzo and H. Fietzek, Oxidation of Metals 81, 179 (2014).

    Article  Google Scholar 

  3. V. Kolarik, R. Roussel, M. Juez Lorenzo and H. Fietzek, Materials at High Temperatures 29, 89 (2012).

    Article  Google Scholar 

  4. A. Agüero, Revista de Metalurgia 43, 63 (2007).

    Google Scholar 

  5. F. Pedraza, M. Mollard, B. Ranou, J. Balmain, B. Bouchaud and G. Bonnet, Materials Chemistry and Physics 134, 700 (2012).

    Article  Google Scholar 

  6. X. Montero, M. Galetz and M. Schütze, Surface and Coatings Technology 206, 1586 (2011).

    Article  Google Scholar 

  7. B. Bouchaud, B. Rannou and F. Pedraza, Materials Chemistry and Physics 143, 416 (2013).

    Article  Google Scholar 

  8. A. Agüero, V. González, M. Gutiérrez, R. Knödler, R. Muelas and S. Straub, Materials and Corrosion 62, 561 (2011).

    Article  Google Scholar 

  9. A. Agüero, M. García and M. Gutiérrez, Materials and Corrosion 56, 937 (2005).

  10. A. Agüero, R. Muelas, A. Pastor and S. Osgerby, Surface and Coatings Technology 200, 1219 (2005).

    Article  Google Scholar 

  11. A. Agüero, V. González, P. Mayr and K. Spiradek-Hahn, Materials Chemistry and Physics 141, 432 (2013).

    Article  Google Scholar 

  12. B. A. Pint, Y. Zhang, L. R. Walker and I. G. Wright, Surface and Coatings Technology 202, 637 (2007).

    Article  Google Scholar 

  13. A. Fry, S. Osgerby and M. Wright, Oxidation of Alloys in Steam. Report No. NPL Report MATC(A)90 (2002).

  14. B. L. Bates, Y. Q. Wang, Y. Zhang and B. A. Pint, Surface and Coatings Technology 204, 766 (2009).

    Article  Google Scholar 

  15. S. Dryepondt, Y. Zhang and B. A. Pint, Surface and Coatings Technologie 201, 3880 (2006).

    Article  Google Scholar 

  16. S. Velraj, Y. Zhang, E. W. Hawkins and B. A. Pint, Materials and Corrosion 63, 909 (2012).

  17. K. Nishida and T. Narita, Japan Inst. Metals 35, 269 (1971).

    Article  Google Scholar 

  18. V. I. Dybkov, Journal of Materials Science 25, 3615 (1990).

    Article  Google Scholar 

  19. Y. Tanaka and M. Kajihara, Journal of Materials Science 45, 5676 (2010).

    Article  Google Scholar 

  20. Y. Tanaka and M. Kajihara, Materials Transactions 50, 2212 (2009).

    Article  Google Scholar 

  21. G. Temizel and M. Özenbaş, Turkish Journal of Engineering and Environmental Sciences 31, 71 (2007).

    Google Scholar 

  22. H. R. Shahverdi, M. R. Ghomashchi, S. Shabestari and J. Hejaci, Journal of Materials Processing Technology 124, 345 (2002).

    Article  Google Scholar 

  23. W.-J. Cheng and C.-J. Wang, Surface and Coatings Technology 204, 824 (2009).

    Article  Google Scholar 

  24. V. Rohr, M. Schütze, E. Fortuna, D. N. Tsipas, A. Milewska and F. J. Pérez, Materials and Corrosion 56, 874 (2005).

  25. B. A. Pint, Y. Zhang, P. F. Tortorelli, J. A. Haynes and I. G. Wright, Materials at High Temperatures 18, 1 (2001).

    Article  Google Scholar 

  26. Y. Zhang, A. P. Liu and B. A. Pint, Materials and Corrosion 58, 751 (2007).

  27. S. Kobayashi and T. Yakou, Materials Science and Engineering A 338, 44 (2002).

    Article  Google Scholar 

  28. M. V. Akdeniz and A. O. Mekhrabov, Acta mater. 46, 1185 (1998).

    Article  Google Scholar 

  29. A. O. Mekhrabov and M. V. Akdeniz, Acta Materials 47, 2067 (1999).

    Article  Google Scholar 

  30. H. J. Grabke, Intermetallics 7, 1153 (1999).

    Article  Google Scholar 

  31. X. Montero, M. C. Galetz and M. Schütze, Surface and Coatings Technologie 236, 465 (2013).

    Article  Google Scholar 

  32. J. T. Bauer, X. Montero, M. Schütze, and M. C. Galetz, Surface and Coatings Technologie 285, 179 (2016).

  33. R. Roussel, Research on multifunctional high temperature coatings based on micro sized aluminium particles. PhD Thesis, Universidad Complutense de Madrid, Fraunhofer ICT, 2013.

  34. M. C. Galetz, X. Montero, M. Mollard, M. Günthner, F. Pedraza and M. Schütze, Intermetallics 44, 8 (2014).

    Article  Google Scholar 

  35. K. Murakami, N. Nishida, K. Osamura, Y. Tomota and T. Suzuki, Acta Materialia 52, 2173 (2004).

    Article  Google Scholar 

  36. http://www.crct.polymtl.ca/fact/ Accesed March 2016.

  37. L. Levin, A. Ginzburg, L. Klinger, T. Werber, A. Katsman and P. Schaaf, Surface and Coatings Technologie 106, 209 (1998).

    Article  Google Scholar 

  38. E. G. Ivanov and N. E. Zhukov, translated from Metallovedenie I Termisheskaya Obrabotka Metallov, No. 6 (1979), pp. 33–35.

  39. Y. Zhang, B. A. Pint, K. M. Cooley and J. A. Haynes, Surface and Coatings Technology 200, 1231 (2005).

    Article  Google Scholar 

  40. B. A. Pint and Y. Zhang, Materials and Corrosion 62, 549 (2011).

  41. I. O. Golosnoy, A. Cipitria and T. W. Clyne, Journal of Thermal Spray Technology 18, 809 (2009).

    Article  Google Scholar 

Download references

Acknowledgements

The research leading to these results has received funding from the European Union’s Seventh Framework Programme (FP7/2007-2013) under Grant Agreement No NMP3-SL-2012-310436 POEMA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge Bermejo Sanz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bermejo Sanz, J., Roussel García, R., Kolarik, V. et al. Influence of the Slurry Thickness and Heat Treatment Parameters on the Formation of Aluminium Diffusion Coating. Oxid Met 88, 179–190 (2017). https://doi.org/10.1007/s11085-017-9771-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-017-9771-z

Keywords

Navigation