Skip to main content
Log in

Steam Oxidation Evaluation of Fe–Cr Alloys for Accident Tolerant Nuclear Fuel Cladding

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

New nuclear fuel cladding materials are being evaluated that can withstand steam environments ≥1200 °C for short (≤4 h) periods in case of a beyond design basis accident. This study focused on commercial and model Fe–Cr alloys, where there is considerable experience in fabricating and joining. Exposures in 1 bar steam and air for 4 h at 800–1300 °C showed that the commercial Fe–Cr alloys were very sensitive to composition and only Fe-25.8%Cr-1%Mo formed a protective chromia scale at 1200 and 1300 °C in steam. A model Fe-22.5%Cr + Mn,Si,Y alloy also formed a protective scale at 1200 °C in steam. Analytical transmission electron microscopy of the reaction products revealed that (1) nominally equiaxed Cr2O3 formed at 1000–1200 °C; (2) at 1000 °C, there was a Mn inner and outer layer but at 1100 and 1200 °C only an outer layer was observed; (3) an amorphous SiO2 inner layer was observed at 1000 and 1100 °C, but the SiO2 was crystalline on the 22.5%Cr model alloy at 1200 °C, which was confirmed by electron and X-ray diffraction; and (4) Fe was found throughout the Cr2O3 formed on alloys without Mn at 1200 °C in steam and air, Fe-rich oxide near the gas interface and Fe-rich metal precipitates near the metal–oxide interface. A few Fe-rich precipitates were detected in oxides formed at 1100 °C and none at 1000 °C. The incorporation of Fe and crystallization of SiO2 at 1200 °C may be detrimental to the formation of a protective chromia scale in steam at ≥1200 °C for this application and explain why such high Cr contents are needed for protective behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. K. R. Robb, M. W. Francis, and L. J. Ott, Nuclear Technology 186, 145 (2014).

    Google Scholar 

  2. L. Hallstadius, S. Johnson, and E. Lahoda, Progress in Nuclear Energy 57, 71 (2012).

    Article  Google Scholar 

  3. S. J. Zinkle, K. A. Terrani, J. C. Gehin, L. J. Ott, and L. L. Snead, Journal of Nuclear Materials 448, 374 (2014).

    Article  Google Scholar 

  4. L. J. Ott, K. R. Robb, and D. Wang, Journal of Nuclear Materials 75, 520 (2014).

    Article  Google Scholar 

  5. K. A. Terrani, S. J. Zinkle, and L. L. Snead, Journal of Nuclear Materials 448, 420 (2014).

    Article  Google Scholar 

  6. B. A. Pint, K. A. Terrani, Y. Yamamoto, and L. L. Snead, Metallurgical and Materials Transactions E 2, 190 (2015).

    Article  Google Scholar 

  7. T. Cheng, J. R. Keiser, M. P. Brady, K. A. Terrani, and B. A. Pint, Journal of Nuclear Materials 427, 396 (2012).

    Article  Google Scholar 

  8. B. A. Pint, K. A. Terrani, M. P. Brady, T. Cheng, and J. R. Keiser, Journal of Nuclear Materials 440, 420 (2013).

    Article  Google Scholar 

  9. B. A. Pint, K. A. Terrani, J. R. Keiser, M. P. Brady, Y. Yamamoto, and L. L. Snead, NACE Paper ED2013-3083, Houston, TX, presented at the 16th Environmental Degradation conference, (Asheville, NC, 2013).

    Google Scholar 

  10. K. A. Terrani, B. A. Pint, C. M. Parish, C. M. Silva, L. L. Snead, and Y. Katoh, Journal of the American Ceramic Society 97, 2331 (2014).

    Article  Google Scholar 

  11. B. A. Pint, K. A. Unocic, and K. A. Terrani, Materials at High Temperature 32, 28 (2015).

    Article  Google Scholar 

  12. Y. Yamamoto, B. A. Pint, K. A. Terrani, K. G. Field, Y. Yang, and L. L. Snead, J. Nuclear Materials 467, 703 (2015).

    Article  Google Scholar 

  13. C. T. Fujii and R. A. Meussner, Journal of the Electrochemical Society 111, 1215 (1964).

    Article  Google Scholar 

  14. J. M. Francis and W. H. Whitlow, Corrosion Science 5, 701 (1965).

    Article  Google Scholar 

  15. C. S. Tedmon, Journal of the Electrochemical Society 113, 766 (1966).

    Article  Google Scholar 

  16. G. C. Wood and J. Boustead, Corrosion Science 8, 719 (1968).

    Article  Google Scholar 

  17. G. C. Wood, I. G. Wright, T. Hodgkiess, and D. P. Whittle, Materials and Corrosion 21, 900 (1970).

    Article  Google Scholar 

  18. I. G. Wright and B. A. Wilcox, Oxidation of Metals 8, 283 (1974).

    Article  Google Scholar 

  19. D. Caplan and G. I. Sproule, Oxidation of Metals 9, 459 (1975).

    Article  Google Scholar 

  20. H. Nagai, Materials Science Forum 43, 75 (1989).

    Article  Google Scholar 

  21. J. Shen, L. Zhou, and T. Li, Oxidation of Metals 48, 347 (1997).

    Article  Google Scholar 

  22. R. Peraldi and B. A. Pint, Oxidation of Metals 61, 463 (2004).

    Article  Google Scholar 

  23. B. A. Pint and I. G. Wright, Oxidation of Metals 63, 193 (2005).

    Article  Google Scholar 

  24. E. Essuman, G. H. Meier, J. Zurek, M. Hänsel, L. Singheiser, and W. J. Quadakkers, Scripta Materialia 57, 845 (2007).

    Article  Google Scholar 

  25. W. J. Quadakkers, J. Żurek, and M. Hänsel, JOM Journal of the Minerals Metals and Materials Society 61(7), 44 (2009).

    Article  Google Scholar 

  26. N. Mu, K. Y. Jung, N. M. Yanar, G. H. Meier, F. S. Pettit, and G. R. Holcomb, Oxidation of Metals 78, 221 (2012).

    Article  Google Scholar 

  27. T. Gheno, D. Monceau, and D. J. Young, Corrosion Science 64, 222 (2012).

    Google Scholar 

  28. B. A. Pint, B. L. Armstrong, I. G. Wright, M. P. Brady, P. F. Tortorelli, R. R. Judkins, and T. R. Armstrong, patent application 12/119,648, submitted 2008, U.S. patent application 2009/0286107, Nov. 19, 2009.

  29. W. J. Quadakkers, J. Piron-Abellan, V. Shemet, and L. Singheiser, Materials at High Temperature 20, 115 (2003).

    Google Scholar 

  30. B. A. Pint, Oxidation of Metals 45, 1–37 (1996).

    Article  Google Scholar 

  31. B. A. Pint, A. J. Garratt-Reed, and L. W. Hobbs, Journal of the American Ceramic Society 81, 305 (1998).

    Article  Google Scholar 

  32. C. M. Cotell, G. J. Yurek, R. J. Hussey, D. F. Mitchell, and M. J. Graham, Oxidation of Metals 34, 173–200 (1990).

    Article  Google Scholar 

  33. T. Denys and P. M. Gielen, Metallurgical Transactions 2, 1423 (1971).

    Google Scholar 

  34. P. J. Grobner, Metallurgical Transactions 4, 251 (1973).

    Article  Google Scholar 

  35. F. Danoix and P. Auger, Materials Characterization 44, 177 (2000).

    Article  Google Scholar 

  36. G. Bonny, D. Terentyev, and L. Malerba, Journal of phase equilibria and diffusion 31, 439 (2010).

    Article  Google Scholar 

  37. M. H. Mathon, Y. de Carlan, G. Geoffroy, X. Averty, A. Alamo, and C. H. de Novion, Journal of Nuclear Materials 312, 236 (2003).

    Article  Google Scholar 

  38. K. G. Field, X. Hu, K. Littrell, Y. Yamamoto, and L. L. Snead, Journal of Nuclear Materials 465, 746 (2015).

    Article  Google Scholar 

Download references

Acknowledgements

The experimental work was conducted by M. Howell, M. Stephens, T. Lowe, D. Coffey, T. Jordan and E. Cakmak. S. Dryepondt and K. Terrani provided useful comments on the manuscript. This research was funded by the U.S. Department of Energy’s Office of Nuclear Energy, Advanced Fuel Campaign of the Fuel Cycle R&D program. The FEI Talos F200X STEM was used as part of the Nuclear Science User Facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. A. Pint.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pint, B.A., Unocic, K.A. Steam Oxidation Evaluation of Fe–Cr Alloys for Accident Tolerant Nuclear Fuel Cladding. Oxid Met 87, 515–526 (2017). https://doi.org/10.1007/s11085-017-9754-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-017-9754-0

Keywords

Navigation