Skip to main content
Log in

Effect of Yttrium as Alloying Element on a Model Alumina-Forming Alloy Oxidation at 1100 °C

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

In order to study the effect of yttrium as alloying element on the high-temperature oxidation of an alumina-forming alloy, 0.093 wt% yttrium was incorporated into a model FeCrAl alloy. Yttrium has a beneficial effect on the isothermal oxidation behavior in air at 1100 °C. Glancing angle X-ray diffraction made on a sample oxidized for 1000 h under thermal cycling conditions indicated that yttrium is located at the internal interface as Y3Al5O12. Secondary neutral mass spectrometry results showed that the diffusion mechanism is modified by the presence of yttrium as an alloying element. Moreover, the beneficial effect of yttrium on the alloy oxidation is also related to a reduced metallic grain size. The growth of metal grains during oxidation was especially observed on the yttrium-free FeCrAl alloy. It is also well established that the diffusion mechanism in the oxide scale is modified by yttrium. The aim of the present work was to show that yttrium also plays a role on the aluminum diffusion in the metallic substrate and has a strong influence on the kinetic transient stage during the FeCrAl–0.1Y oxidation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. K. Messaoudi, A. M. Huntz and B. Lesage, Materials Science and Engineering A 247, 248 (1998).

    Article  Google Scholar 

  2. J. Jedlinski, Oxidation of Metals 39(1/2), 55 (1993).

    Article  Google Scholar 

  3. S. Chevalier, G. Strehl, H. Buscail, G. Borchardt and J. P. Larpin, Materials and Corrosion 55, 352 (2004).

    Article  Google Scholar 

  4. X. G. Zheng and D. J. Young, Corrosion Science 40(4/5), 741 (1998).

    Article  Google Scholar 

  5. K. Przybylski and G. J. Yurek, Materials Science Forum 43 1 (1989).

    Article  Google Scholar 

  6. P. Castello, F. H. Stott and F. Gesmundo, Corrosion Science 41, 901 (1999).

    Article  Google Scholar 

  7. R. Cueff, H. Buscail, E. Caudron, C. Issartel and F. Riffard, Corrosion Science 45, 1815 (2003).

    Article  Google Scholar 

  8. B. A. Pint, A. J. Garatt-Reed and L. W. Hobbs, Materials at High Temperatures 13, 3 (1995).

    Article  Google Scholar 

  9. T. Amano, T. Watanabe and M. Michiyama, Oxidation of Metals 53, 451 (2000).

    Article  Google Scholar 

  10. R. Bousquet, D. Fayeulle, E. Bruyere and F. Bertrand, Oxidation of Metals 80, 13 (2013).

    Article  Google Scholar 

  11. P. Untoro, M. Dani, H. J. Klaar, J. Mayer, D. Naumenko, J. C. Kuo, and W. J. Quadakkers, Materials Aspects in Automotive Catalytic Converters, 271 (2002).

  12. D. Naumenko, J. Le-Coze, E. Wessel, W. Fischer and W. J. Quadakkers, Materials Transactions 43, 168 (2002).

    Article  Google Scholar 

  13. S. Chevalier, A. P. Dawah Tankeu, H. Buscail, C. Issartel, G. Borchardt and J. P. Larpin, Materials and Corrosion 55, 610 (2004).

    Article  Google Scholar 

  14. S. Chevalier, G. Strehl, H. Buscail, C. Issartel, G. Borchardt and J. P. Larpin, Materials and Corrosion 57, 476 (2006).

    Article  Google Scholar 

  15. Z. Liu, W. Gao and Y. He, Oxidation of Metals 53(3/4), 341 (2000).

    Article  Google Scholar 

  16. K. Przybylski, A. J. Garratt-Reed and G. J. Yurek, Journal of the Electrochemical Society 135, 509 (1988).

    Article  Google Scholar 

  17. K. Bongartz, W. J. Quadakkers, J. P. Pfeifer and J. S. Becker, Surface Science 292, 196 (1993).

    Article  Google Scholar 

  18. K. Hellström, N. Israelsson, N. Mortazavi, S. Canovic, M. Halvarsson, J. E. Svensson and L. G. Johansson, Oxidation of Metals 83, 533 (2015).

    Article  Google Scholar 

  19. B. Pieraggi, Oxidation of Metals 27, 177 (1987).

    Article  Google Scholar 

  20. G. C. Wood and F. H. Stott, in High Temperature Corrosion, Nace-6, eds. R. A. Rapp (NACE International, 1958), p. 227.

  21. R. Prescott and M. J. Graham, Oxidation of Metals 38(1/2), 73 (1991).

    Google Scholar 

  22. K. M. N. Prasanna, A. S. Khanna, R. Chandra and W. J. Quadakkers, Oxidation of Metals 46(5/6), 465 (1996).

    Article  Google Scholar 

  23. E. Schumann, Oxidation of Metals 43(1/2), 157 (1995).

    Article  Google Scholar 

  24. R. Cueff, H. Buscail, E. Caudron, and F. Riffard, La revue de Métallurgie-SF2M 147 (2000).

  25. M. K. Loudjani, C. Haut and S. Parisot, Radiation Effects and Defects in Solids 134, 233 (1995).

    Article  Google Scholar 

  26. M. K. Loudjani and C. Haut, Journal of the European Ceramic Society 16, 1099 (1996).

    Article  Google Scholar 

  27. B. A. Pint, Oxidation of Metals 45(1/2), 1 (1996).

    Article  Google Scholar 

  28. A. M. Huntz, Journal de Physique III 5, 1729 (1995).

    Article  Google Scholar 

  29. M. Le Gall, A. M. Huntz, B. Lesage, C. Monty and J. Bernardini, Journal of Materials Science 30, 201 (1995).

    Article  Google Scholar 

  30. B. Lesage, L. Maréchal, A. M. Huntz and R. Molins, Defect and Diffusion Forum 194–199, 1707 (2001).

    Article  Google Scholar 

  31. F. Liu, M. Halvarsson, K. Hellström, J. E. Svensson and L. G. Johansson, Oxidation of Metals 83, 441 (2015).

    Article  Google Scholar 

  32. S. Chevalier, J. P. Larpin, P. Dufour, G. Strehl, G. Borchardt, K. Przybylski, S. Weber and H. Scherrer, Materials at High Temperatures 20(3), 365, (2003).

    Article  Google Scholar 

  33. J. R. Blachère, E. Schumann, G. H. Meier and F. S. Pettit, Scripta Materialia 49, 909 (2003).

    Article  Google Scholar 

  34. I. A. Akimova, V. M. Mironov and A. V. Pokoyev, Fiz. Metal. Metalloved 56(6), 1225 (1983).

    Google Scholar 

  35. A. Heesemann, E. Schmidtke, F. Faupel, A. Kolb-Telieps and J. Klöwer, Scripta Materialia 40(5), 517 (1999).

    Article  Google Scholar 

  36. S. Horibe and T. Nakayama, Corrosion Science 15, 589 (1975).

    Article  Google Scholar 

  37. K. Sasa and T. Nakayama, Corrosion Science 17, 783 (1977).

    Article  Google Scholar 

  38. M. D. Merz, Metallurgical Transactions 10A, 71 (1979).

    Article  Google Scholar 

  39. S. N. Basu and G. J. Yurek, Oxidation of Metals 36(3/4), 281 (1991).

    Article  Google Scholar 

  40. I. Murris, Y. P. Jacob, V. A. C. Haanappel and M. F. Stroosnijder, Oxidation of Metals 55(3/4), 307 (2001).

    Article  Google Scholar 

  41. X. Peng, J. Yan, Y. Zhou and F. Wang, Acta Materialia 53, 5079 (2005).

    Article  Google Scholar 

  42. J. H. Kim, D. I. Kim, S. Suwas, E. Fleury and K. W. Yi, Oxidation of Metals 79, 239 (2013).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Prof. J. Le Coze for providing the model base FeCrAl and FeCrAl0.1Y alloys. They are also grateful to Prof. G. Borchardt and Dr. Strehl for the 16O2 and 18O2 oxidations, and Prof. S. Weber for the SNMS experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christophe Issartel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Issartel, C., Buscail, H., Chevalier, S. et al. Effect of Yttrium as Alloying Element on a Model Alumina-Forming Alloy Oxidation at 1100 °C. Oxid Met 88, 409–420 (2017). https://doi.org/10.1007/s11085-017-9750-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-017-9750-4

Keywords

Navigation