Skip to main content
Log in

Behavior of Slurry Aluminized Austenitic Stainless Steels under Steam at 650 and 700 °C

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

Slurry aluminide coatings were deposited on IN-800HT and HR3C austenitic stainless steels. The additive layers were based on B2-(Fe,Ni)Al and contained tensile cracks in a greater extent in HR3C than in IN-800HT. The oxidation kinetics of the aluminized and uncoated steels were then evaluated under 1 bar of steam at 650 and 700 °C till 2000 h. The overall mass gain of the Al-coated IN-800HT was about half that of the uncoated substrate at 650 °C. The oxidation kinetics of the Al-coated IN-800HT were parabolic, but a sub-parabolic regime was found in the uncoated counterparts. In the former, α-Al2O3 grew while the latter developed a very thin scale that could not be accurately characterized. The Al-coated HR3C accumulated a greater specific mass gain than the uncoated steel at 700 °C. However, it is believed that the presence of cracks and of a rougher surface of the coating is responsible for the greater mass gains. Indeed, both the Al-coated and the uncoated HR3C substrates followed sub-parabolic oxidation rate indicative of a very thin oxide scale. The scales were composed of α-Al2O3 in the Al-coated material, while Fe3O4, Fe2O3 and Cr2O3 were found in the uncoated HR3C. No evidence of Cr loss by evaporation of CrO2(OH)2 or of hydrogen permeation was found under the experimental conditions studied here. The aluminide coatings appeared though stable from a metallurgical point of view after the 2000 h of exposure to steam.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. M. Fulger, D. Ohai, M. Mihalache, M. Pantiru and V. Malinovschi, Journal of Nuclear Materials 385, 2009 (288).

    Article  Google Scholar 

  2. G.R. Holcomb and D. Hsu, Steam Turbine Materials and Corrosion, 22nd annual conference on fossil energy materials, Pittsburg, USA (2008).

  3. D. J. Young and B. A. Pint, Oxidation of Metals 66, 2006 (137).

    Article  Google Scholar 

  4. G. R. Holcomb, Oxidation of Metals 69, 2008 (163).

    Article  Google Scholar 

  5. R.M. Purgert and R. Viswanathan, Steam Turbine Materials for Ultrasupercritical Coal Power Plants. Technical Report DOE/DE-FC26-05NT42442 (DOE, 2007).

  6. T. Dudziak, M. Lukaszewicz, N. Simms and J. R. Nicholls, Corrosion Engineering. Science and Technology 50, 2015 (272).

    Google Scholar 

  7. J. Yuan, X. Wu, W. Wang, S. Zhu and F. Wang, Materials 7, 2014 (2772).

    Article  Google Scholar 

  8. J. Yuan, W. Wang, H. Zhang, L. Zhu, S. Zhu and F. Wang, Corrosion Science 109, 2016 (36).

    Article  Google Scholar 

  9. A. Agüero, M. Gutiérrez and V. González, Materials at High Temperatures 25, 2008 (257).

    Article  Google Scholar 

  10. A. Agüero, M. Hernández, M. Gutiérrez, R. Knödler, R. Muelas and S. Straub, Materials and Corrosion 62, 2011 (561).

    Article  Google Scholar 

  11. L. Sánchez, F. J. Bolívar, M. P. Hierro and F. J. Pérez, Thin Solid Films 517, 2009 (3292).

    Article  Google Scholar 

  12. S. Guo, Z. B. Wang and K. Lu, Journal of Materials Science and Technology 31, 2015 (1268).

    Article  Google Scholar 

  13. J. L. Marulanda, S. I. Castañeda and F. J. Pérez, Oxidation of Metals 84, 2015 (429).

    Article  Google Scholar 

  14. B. A. Pint and Y. Zhang, Materials and Corrosion 62, 2011 (549).

    Article  Google Scholar 

  15. R. Viswanathan, Advanced Materials and Processes 162, 2004 (73).

    Google Scholar 

  16. M. Fulger, M. Mihalache, D. Ohai, S. Fulger and S. C. Valeca, Journal of Nuclear Materials 415, 2011 (147).

    Article  Google Scholar 

  17. R. Viswanathan, J. Sarver and J. Tanzosh, Journal of Materials Engineering and Performance 15, 2005 (255).

    Article  Google Scholar 

  18. F. Pedraza, M. Proy, C. Boulesteix, P. Krukovskyi and M. Metel, Materials and Corrosion 67, 2016 (1059).

    Article  Google Scholar 

  19. B. Rannou, F. Velasco, S. Guzman, V. Kolarik and F. Pedraza, Materials Chemistry and Physics 134, 2012 (360).

    Article  Google Scholar 

  20. J. Zhang and H.-T. Li, J-H, Guo and F-R. Chin, Chinese Physical Letters 32, 2015 (126801).

    Article  Google Scholar 

  21. M. Mollard, B. Rannou, B. Bouchaud, J. Balmain, G. Bonnet and F. Pedraza, Corrosion Science 66, 2013 (118).

    Article  Google Scholar 

  22. Y. S. Touloukian, R. K. Kirby, R. E. Taylor and T. Y. Lee, Thermophysical properties of matter, Thermal Expansion Nonmetallic Solids, 13, (Plenum, New York, 1977), p. 176.

    Google Scholar 

  23. W. J. Cheng and C. J. Wang, Applied Surface Science 277, 2013 (139).

    Article  Google Scholar 

  24. M. W. Brumm and H. J. Grabke, Corrosion Science 33, 1992 (1677).

    Article  Google Scholar 

  25. P. Kofstad, High Temperature Corrosion, Chapter 5, (Elsevier Applied Science, London, 1998), p. 149.

    Google Scholar 

  26. B. Bouchaud, J. Balmain and F. Pedraza, Oxidation of Metals 69, 2008 (193).

    Article  Google Scholar 

  27. A. Agüero, K. Spiradek, M. Gutiérrez, R. Muelas and S. Höfinger, Materials Science Forum 595–598, 2008 (251).

    Article  Google Scholar 

  28. A. Agüero, R. Muelas, A. Pastor and S. Osgerby, Surface and Coatings Technology 200, 2005 (1219).

    Article  Google Scholar 

  29. J. C. Langevoort, I. Sutherland, L. J. Hanekamp and P. J. Gellings, Applied Surface Science 18, 1987 (167).

    Article  Google Scholar 

  30. S. R. J. Saunders, M. Monteiro and F. Rizzo, Progress in Materials Science 53, 2008 (775).

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge European Union for the funding of FP7 project “POEMA: Production of Coatings for New Efficient and Clean Coal Power Plant Materials” (Grant agreement No. 310436).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Pedraza.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pedraza, F., Boulesteix, C., Proy, M. et al. Behavior of Slurry Aluminized Austenitic Stainless Steels under Steam at 650 and 700 °C. Oxid Met 87, 443–454 (2017). https://doi.org/10.1007/s11085-017-9725-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-017-9725-5

Keywords

Navigation