Skip to main content

Advertisement

Log in

Effect of Zinc Chloride in Ash in Oxidation Kinetics of Ni-Based and Fe-Based Alloys

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

Corrosion by molten phases leads to severe corrosion of heat exchangers in waste-to-energy plants. In addition, the presence of heavy metal chlorides in ash deposit increases degradation at low temperature due to the formation of highly corrosive molten phases. In this study, two heat exchanger materials, a low alloy steel (16Mo3) and a nickel based alloy (Inconel 625) were exposed in air to three different synthetic ashes, with various chloride contents, including ZnCl2 at isothermal temperatures of 450 and 650 °C in a muffle furnace. After the test, thickness and mass losses were evaluated on two separate samples, and metallographic cross sections of the specimens were characterized via SEM/EDX analyses. Both measurement results were in good agreement and showed that the corrosion observed on both materials was higher in the presence of zinc chloride in ash at 450 °C than in ashes without heavy metal chloride at 650 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Y. Kawahara, Corrosion Science 44, 223 (2002).

    Article  Google Scholar 

  2. A. J. Pedersen, F. J. Frandsen, C. Riber, T. Astrup, S. N. Thomsen, K. Lundtorp and L. F. Mortensen, Energy & Fuels 23, 3475 (2009).

    Article  Google Scholar 

  3. M. Becidan, L. Sørum, F. Frandsen and A. J. Pedersen, Fuel 88, 595 (2009).

    Article  Google Scholar 

  4. T. Talonen, Chemical equilibria of heavy metals in waste incineration: comparison of thermodynamic databases. Lic. Thesis. (Åbo Akademi University, Finland, 2008).

  5. Y. L. Zhang and E. Kasai, ISIJ International 44, 1457 (2004).

    Article  Google Scholar 

  6. M. Bøjer, P. A. Jensen, F. Frandsen, K. Dam-Johansen, O. H. Madsen and K. Lundtorp, Fuel Processing Technology 89, 528 (2008).

    Article  Google Scholar 

  7. S. Osada, D. Kuchar and H. Matsuda, Journal of Material Cycles and Waste Management 11, 367 (2009).

    Article  Google Scholar 

  8. C. Chan, C. Q. Jia, J. W. Graydon and D. W. Kirk, Journal of Hazardous Materials 50, 1 (1996).

    Article  Google Scholar 

  9. M. Spiegel, Materials and Corrosion 50, 373 (1999).

    Article  Google Scholar 

  10. Y. S. Li, Y. Niu and W. T. Wu, Materials Science and Engineering: A 345, 64 (2003).

    Article  Google Scholar 

  11. E. Schaal, N. David, P. J. Panteix, C. Rapin, J. M. Brossard and F. Maad, Oxidation of Metals 84, 307 (2015).

    Article  Google Scholar 

  12. H. J. Grabke, Materials at High Temperatures 11, 23 (1993).

    Article  Google Scholar 

  13. J. Lehmusto, P. Yrjas, B. J. Skrifvars and M. Hupa, Fuel Processing Technology 104, 253 (2012).

    Article  Google Scholar 

  14. J. Pettersson, N. Folkeson, L. G. Johansson and J. E. Svensson, Oxidation of metals 76, 93 (2011).

    Article  Google Scholar 

  15. D. Bankiewicz, P. Yrjas, D. Lindberg and M. Hupa, Corrosion Science 66, 225 (2013).

    Article  Google Scholar 

  16. T. Jonsson, N. Folkeson, J. E. Svensson, L. G. Johansson and M. Halvarsson, Corrosion Science 53, 2233 (2011).

    Article  Google Scholar 

  17. T. Varis, D. Bankiewicz, P. Yrjas, M. Oksa, T. Suhonen, S. Tuurna, K. Ruusuvuori and S. Holmström, Surface & Coatings Technology 265, 235 (2015).

    Article  Google Scholar 

  18. A. Ruh and M. Spiegel, Corrosion Science 48, 679 (2006).

    Article  Google Scholar 

  19. Y. S. Li, M. Spiegel and S. Shimada, Materials Chemistry and Physics 93, 217 (2005).

    Article  Google Scholar 

  20. J. Lehmusto, B. J. Skrifvars, P. Yrjas and M. Hupa, Corrosion Science 53, 3315 (2011).

    Article  Google Scholar 

  21. S. Enestam, D. Bankiewicz, J. Tuiremo, K. Mäkelä and M. Hupa, Fuel 104, 294 (2013).

    Article  Google Scholar 

  22. C. W. Bale, P. Chartrand, S. A. Degterov, G. Eriksson, K. Hack, R. B. Mahfoud, J. Melancon, A. A. Pelton and S. Petersen, Calphad 26, 189 (2002).

    Article  Google Scholar 

  23. ISO/DIS 17248, AFNOR, (2014)

  24. N. P. Lushnaya, N. N. Evseeva and I. P. Vereshchetina, Russian Journal of Inorganic Chemistry 1, 35 (1956).

    Google Scholar 

  25. M. Sánchez Pastén and M. Spiegel, Materials and Corrosion 57, 192 (2006).

    Article  Google Scholar 

  26. D. Bankiewicz, S. Enestam, P. Yrjas and M. Hupa, Fuel Processing Technology 105, 89 (2013).

    Article  Google Scholar 

  27. A. Roine. HSC Chemistry Version 4.1. (Outokumpu Research Organization, Pori, Finland, 1999).

Download references

Acknowledgments

This work has been supported by the French National Research Agency with project ANR SCAPAC 11-RMNP-0016 in partnership with, AIR LIQUIDE, SEDIS and CIRIMAT/ENSIACET. The authors thank L. ARANDA of Institut Jean Lamour, Nancy (France) for carrying out TMA and DTA analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Schaal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schaal, E., David, N., Panteix, P.J. et al. Effect of Zinc Chloride in Ash in Oxidation Kinetics of Ni-Based and Fe-Based Alloys. Oxid Met 85, 547–563 (2016). https://doi.org/10.1007/s11085-016-9612-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-016-9612-5

Keywords

Navigation