Skip to main content
Log in

Tantalum Oxidation in Steam Atmosphere

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

The oxidation behavior of tantalum in steam was investigated in the temperature range of 600–1100 °C. Thermogravimetric measurements were used to determine the oxidation behavior of the Ta metal at different steam partial pressures (10, 50 and 100 kPa). As a result of the oxidation tests, the samples show parabolic behavior for the initial period of oxidation, which is almost not visible at temperature higher than 700 °C. After the short parabolic kinetics, breakaway occurs and turns the kinetics from parabolic to linear. In this work kinetic parameters of the linear oxidation were determined. The influence of the samples´ shape was investigated using both plate and cylinder specimens. Experiments aimed at quantifying the hydrogen uptake of tantalum were conducted at temperatures between 600 and 1000 °C, and results differ from the expected ones applying the Sieverts’ law. Post-test optical microscopy was performed in order to analyze the post-oxidation appearance of the materials. The oxide scale appeared non-protective, especially at low temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

References

  1. J.C. Brachet, C. Lorrette, A. Michaux, C. Sauder, I. Idarraga-Trujillo, M. Le Saux, and A. Ambard, CEA Studies on Advanced Nuclear Fuel Claddings for Enhanced Accident Tolerant LWRs Fuel (LOCA and beyond LOCA conditions). Contrib. Mater. Investig. Oper. Exp. to LWRs’ Safety, Perform. Reliab. Fr. Avignon, 2014).

  2. N. P. Bansal and J. Lamon, Ceramic Matrix Composites: Materials, Modeling and Technology, (Wiley, Heidelberg, 2015).

    Google Scholar 

  3. P. Kofstad, Journal of the Less Common Metals 5, 158 (1963).

    Article  Google Scholar 

  4. J. Stringer, Journal of the Less Common Metals 16, 55 (1968).

    Article  Google Scholar 

  5. J. Stringer, Journal of The Electrochemical Society 114, 428 (1967).

    Article  Google Scholar 

  6. M. G. Cowgill and J. Stringer, Journal of the Less Common Metals 2, 233 (1960).

    Article  Google Scholar 

  7. V. B. Voitovich, V. A. Lavrenko, V. M. Adejev and E. I. Golovko, Oxidation of Metals 43, 509 (1995).

    Article  Google Scholar 

  8. K. Bouzouita and J. Desmaison, Journal of Alloys and Compounds 336, 270 (2002).

    Article  Google Scholar 

  9. P. Kofstad and O. J. Krudtaa, Journal of the Less Common Metals 5, 477 (1963).

    Article  Google Scholar 

  10. R. Chandrasekharan, I. Park, R. I. Masel and M. A. Shannon, Journal of Applied Physics 98, 1 (2005).

    Article  Google Scholar 

  11. S. Garg and N. Krishnamurthy, Journal of Phase Equilibria 17, 63 (1996).

    Article  Google Scholar 

  12. D.A. Vaughan, O.M. Stewart, and C.M. Schwartz, Determination of Interstitial Solid-Solubility Limit in Tantalum and Identification of the Precipitate Phases (1960).

  13. N. Norman, P. Kofstad and O. J. Krudtaa, Journal of the Less Common Metals 4, 124 (1962).

    Article  Google Scholar 

  14. R. Bürgel, H. Jürgen Maier, and T. Niendorf, Handbuch Hochtemperatur-Werkstofftechnik (Wiesbaden, Vieweg + Teubner 2011).

  15. E. McCafferty, Introduction to Corrosion Science, (Springer, New York, 2010).

    Book  Google Scholar 

  16. P. Kofstad, Journal of The Electrochemical Society 110, 491 (1963).

    Article  Google Scholar 

  17. P. Kofstad, Journal of The Electrochemical Society 109, 776 (1962).

    Article  Google Scholar 

  18. P. Kofstad, Journal of the Institute of Metals 90 (1962).

  19. L.M. Adelsberg, G.R. St. Pierre, and R. Speiser, Transactions of the Metallurgical Society of AIME (1968).

  20. K.J. Richards and M.E. Wadsworth, Transactions of the Metallurgical Society of AIME 230 (1954).

  21. M. Kilpatrick and S. K. Lott, Journal of the Less Common Metals 8, 299 (1965).

    Article  Google Scholar 

  22. M. De Nicola, Y. Wouters, A. Galerie and M. Caillet, Journal de Chimie-Physique et de Physico-Chimie Biologique 92, 1142 (1995).

    Google Scholar 

  23. M. Arias, P. Sarrazin and G. Danger, Acta Cientifica Venezolana 32, 286 (1981).

    Google Scholar 

  24. R. Baboian, Corrosion Tests and Standards: Application and Interpretation: (MNL 20), 2nd edn. (2005).

  25. A. San-Martin and F. D. Manchester, Journal of Phase Equilibria 12, 332 (1991).

    Article  Google Scholar 

  26. H. F. Franzen, A. S. Khan and D. T. Peterson, Journal of the Less Common Metals 55, 143 (1977).

    Article  Google Scholar 

  27. V. Angelici Avincola, M. Grosse, U. Stegmaier, M. Steinbrueck and H. J. Seifert, Nuclear Engineering and Design 295, 468 (2015).

    Article  Google Scholar 

  28. N. C. Stephenson and R. S. Roth, Acta Crystallographica B 27, 1037 (1971).

    Article  Google Scholar 

  29. C. Asensio-Jimenez, L. Niewolak, H. Hattendorf, B. Kuhn, P. Huczkowski, L. Singheiser and W. J. Quadakkers, Oxidation of Metals 79, 15 (2012).

    Article  Google Scholar 

  30. J.R. Davis, editor, ASM Specialty Handbook: Heat-Resistant Materials (ASM International, Materials Park, 1997).

  31. M. Grosse, Nuclear Technology 170, 272 (2010).

    Google Scholar 

  32. M. Grosse, E. Lehmann, M. Steinbrück, G. Kühne and J. Stuckert, Journal of Nuclear Materials 385, 339 (2009).

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Helmholtz Program “NUSAFE”. The authors wish to thank the French Alternative Energies and Atomic Energy Commission CEA for providing samples. Help from Dr. H. Leiste for the XRD analyses and from P. Severloh for metallography support is appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Angelici Avincola.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Angelici Avincola, V., Janek, M., Stegmaier, U. et al. Tantalum Oxidation in Steam Atmosphere. Oxid Met 85, 459–487 (2016). https://doi.org/10.1007/s11085-015-9607-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-015-9607-7

Keywords

Navigation