Skip to main content
Log in

Effect of Chloride Content in Ash in Oxidation Kinetics of Ni-Based and Fe-Based Alloys

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

Corrosion under deposit is one of the main mechanisms responsible of degradation and failure observed on heat exchangers in waste-to-energy plants. In this study, two heat exchanger materials, a low alloy steel (16Mo3) and a nickel-based alloy (Inconel 625) were isothermally exposed in air to two different synthetic ashes with low and high chloride contents at temperatures between 450 and 650 °C in a muffle furnace. After the test, thickness and mass losses were evaluated on two separate samples and metallographic cross sections of the specimens were characterized with a SEM/EDS analyzer. Results were in good agreement and have shown that the corrosion rates of both materials increase with chloride content especially for the ferritic steel. Additionally, it has been observed that corrosion rates increase above the temperature of solidus of salt mixtures, and thus, with the apparition of molten phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Y. Kawahara, Corrosion Science 44, 2002 (223).

    Article  Google Scholar 

  2. D. Bramhoff, H. J. Grabke and H. P. Schmidt, Effects of Hydrogen Chloride and of Nitrogen in the Oxidation of Fe-20Cr, (Springer, Netherlands, 1989), p. 335.

    Google Scholar 

  3. H. J. Grabke, Materials at High Temperatures 11, 1993 (23).

    Google Scholar 

  4. H. J. Grabke, E. Reese and M. Spiegel, Corrosion Science 37, (7), 1995 (1023).

    Article  Google Scholar 

  5. M. Spiegel and H. J. Grabke, Materials and Corrosion (Germany) 47, (4), 1996 (179–189).

    Article  Google Scholar 

  6. N. Otsuka, Corrosion Science 44, (2), 2002 (265–283).

    Article  Google Scholar 

  7. K. Weulersse, G. Moulin, P. Billard and G. Pierotti, Materials Science Forum 461, 2004 (973).

    Article  Google Scholar 

  8. A. Ruh and M. Spiegel, Materials and Corrosion 57, (3), 2006 (237–243).

    Article  Google Scholar 

  9. P. Viklund, High temperature corrosion during waste incineration. Characterization, causes and prevention of chlorine-induced corrosion, Licentiate Thesis (Kungliga Tekniska Högskolan, Stockholm, 2011).

  10. J. Reichelt, G. Pfrang-Stotz, B. Bergfeldt, H. Seifert and P. Knapp, Waste Management 33, (1), 2013 (43–51).

    Article  Google Scholar 

  11. M. Takemura, M. J. McNallan, Environmental effects on molten chloride accelerated corrosion in waste incineration systems corrosion/95, Paper, (568), 1995.

  12. T. Ishitsuka and K. Nose, Corrosion Science 44, (2), 2002 (247–263).

    Article  Google Scholar 

  13. R. A. Rapp, K. S. Goto. The hot corrosion of metals by molten salts. In Proceedings of the Second International Symposium on Molten Salts (Vol. 81, No. 10, p. 159). Physical Electrochemistry Division, Electrochemical Society (1981).

  14. P. Steinmetz and C. Rapin, Materials Science Forum 251, 1997 (505–518).

    Article  Google Scholar 

  15. K. Persson, M. Broström, J. Carlsson, A. Nordin and R. Backman, Fuel Processing Technology 88, (11), 2007 (1178–1182).

    Article  Google Scholar 

  16. A. Phongphiphat, C. Ryu, Y. B. Yang, K. N. Finney, A. Leyland, V. N. Sharifi and J. Swithenbank, Corrosion Science 52, (12), 2010 (3861–3874).

    Article  Google Scholar 

  17. P. Viklund, A. Hjörnhede, P. Henderson, A. Stålenheim and R. Pettersson, Fuel Processing Technology 105, 2013 (106–112).

    Article  Google Scholar 

  18. B. A. Baker, G. D. Smith, L. E. Shoemaker, Performance of Commercial Alloys in Simulated Waste Incineration Environments. CORROSION/2001, Paper, (183), 2001.

  19. H. J. Grabke, M. Spiegel and A. Zahs, Materials Research 7, (1), 2004 (89–95).

    Article  Google Scholar 

  20. Y. Kawahara, M. Kira, M. Ike, Effect of Gas Temperature and Its Fluctuation on the High Temperature Corrosion of WTE Boiler Materials. CORROSION 2001, 2001.

  21. F. Lebel, C. Rapin, J. F. Mareche, R. Podor, X. Chaucherie, P. Y. Guernion and J. M. Brossard, Materials Science Forum 595, 2008 (271–280).

    Article  Google Scholar 

  22. J. M. Brossard, I. Diop, X. Chaucherie, F. Nicol, C. Rapin and M. Vilasi, Materials and Corrosion 62, (6), 2011 (543–548).

    Article  Google Scholar 

  23. J. Lehmusto, P. Yrjas, B. J. Skrifvars and M. Hupa, Fuel Processing Technology 104, 2012 (253–264).

    Article  Google Scholar 

  24. J. Pettersson, N. Folkeson, L. G. Johansson and J. E. Svensson, Oxidation of Metals 76, (1–2), 2011 (93–109).

    Article  Google Scholar 

  25. D. Bankiewicz, P. Yrjas, D. Lindberg and M. Hupa, Corrosion Science 66, 2013 (225–232).

    Article  Google Scholar 

  26. T. Jonsson, N. Folkeson, J. E. Svensson, L. G. Johansson and M. Halvarsson, Corrosion Science 53, (6), 2011 (2233–2246).

    Article  Google Scholar 

  27. T. Varis, D. Bankiewicz, P. Yrjas, M. Oksa, T. Suhonen, S. Tuurna, K. Ruusuvuori and S. Holmström, Surface and Coatings Technology 265, 2015 (235–243).

    Article  Google Scholar 

  28. A. Ruh and M. Spiegel, Corrosion Science 48, (3), 2006 (679–695).

    Article  Google Scholar 

  29. Y. S. Li, M. Spiegel and S. Shimada, Materials Chemistry and Physics 93, (1), 2005 (217–223).

    Article  Google Scholar 

  30. J. Lehmusto, B. J. Skrifvars, P. Yrjas and M. Hupa, Corrosion Science 53, (10), 2011 (3315–3323).

    Article  Google Scholar 

  31. S. Enestam, D. Bankiewicz, J. Tuiremo, K. Mäkelä and M. Hupa, Fuel 104, 2013 (294–306).

    Article  Google Scholar 

  32. Y. Kawahara, Materials and Corrosion 57, (1), 2006 (60–72).

    Article  Google Scholar 

  33. G. D. Smith, D. J. Tillack, S. J. Patel and E. A. Loria, Superalloys 718, 625, 706 and Various Derivatives, (The Minerals Metals & Materials Society, Warrendale, 2001), p. 35.

    Book  Google Scholar 

  34. S. Andersson, E. W. Blomqvist, L. Bäfver, F. Jones, K. Davidsson, J. Froitzheim, M. Karlsson, E. Larsson and J. Liske, Waste Management 34, (1), 2014 (67–78).

    Article  Google Scholar 

  35. W. W. Luo, Z. D. Liu, Y. T. Wang and R. J. Yang, Procedia Engineering 36, 2012 (212–216).

    Article  Google Scholar 

  36. C. W. Bale, P. Chartrand, S. A. Degterov, G. Eriksson, K. Hack, R. B. Mahfoud, J. Melancon, A. D. Pelton and S. Petersen, Calphad 26, (2), 2002 (189–228).

    Article  Google Scholar 

  37. ISO/DIS 17248, AFNOR, (2014)

  38. J. J. Rowe, G. W. Morey, C. S. Zen. The quinary reciprocal salt system Na, K, Mg, Ca/Cl, SO4—a review of the literature with new data, Geological Survey Professional Paper (US) 741, 1–37, 1972

  39. J. M. Sangster, A. D. Pelton, Critical Coupled Evaluation of Phase Diagrams and Thermodynamic Properties of Binary and Ternary Alkali Salt Systems, Special Report to the Phase Equilibria Program, Part B: Evaluations for 54 common-ion binary systems involving (Li, Na, K) and (F, Cl, OH, NO3, CO3, SO4), American Ceramic Society, Westerville, Ohio, 4–231, 1987

  40. J. Mochinaga, H. Ohtani and K. Igarashi, Denki Kagaku Oyobi Kogyo Butsuri Kagaku 49, 1981 (19).

    Google Scholar 

  41. J. J. Rowe, G. W. Morey and I. D. Hansen, Journal of Inorganic and Nuclear Chemistry 27, (1), 1965 (53–58).

    Article  Google Scholar 

  42. H. Mueller, Beilage-band 30, 1910 (36).

    Google Scholar 

  43. A. G. Bergman and M. S. Golubeva, Doklady Akademiia Nauk SSR 89, 1953 (471–473).

    Google Scholar 

  44. M. Spiegel, Materials and Corrosion 51, (5), 2000 (303–312).

    Article  Google Scholar 

  45. A. Roine, HSC Chemistry Version 4.1. (Outokumpu Research Organization, Pori, 1999).

  46. R. A. Rapp, Corrosion Science 44, (2), 2002 (209–221).

    Article  Google Scholar 

  47. F. Soutrel, Comportement de metaux purs (Fe, Ni, Cr ET Al) et de leurs alliages dans des conditions simulant celles rencontrees en incinerateur d’O. M. (Doctoral dissertation), 1998.

  48. R. A. Rapp and N. Otsuka, ECS Transactions 16, (49), 2009 (271–282).

    Article  Google Scholar 

Download references

Acknowledgments

This work has been supported by the French National Research Agency with Project ANR SCAPAC 11-RMNP-0016 in partnership with, AIR LIQUIDE, SEDIS and CIRIMAT/ENSIACET. The authors thank S. Mathieu of the service of microscopy and microanalyses (SCMEM) of the Faculty of Science and Techniques of Nancy (France) for carrying out SEM analyses and L. Aranda of Institut Jean Lamour, Nancy (France) for carrying out TMA and DTA analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Schaal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schaal, E., David, N., Panteix, P.J. et al. Effect of Chloride Content in Ash in Oxidation Kinetics of Ni-Based and Fe-Based Alloys. Oxid Met 84, 307–327 (2015). https://doi.org/10.1007/s11085-015-9556-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-015-9556-1

Keywords

Navigation