Skip to main content
Log in

High Temperature Oxidation Behavior of SIMP Steel

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

The oxidation behavior of two ferrite/martensite (F/M) steels, including a novel 9–12 % Cr modified F/M steel named SIMP steel and a commercial T91 steel, were studied in air at 700 °C for up to 1,000 h. The oxides formed on the two steels were characterized and analyzed by XRD, XPS, SEM and EPMA. The results showed that the oxide formed on SIMP steel was single-layer including flake-like Cr2O3 with Mn1.5Cr1.5O4 spinel particles, while the oxide on T91 steel exhibited a double layers structure consisting of an outer hematite Fe2O3 layer and an inner Fe–Cr spinel layer. The reason why the SIMP steel showed better high temperature oxidation resistance than T91 steel was analyzed to be due to the higher Cr and Si contents that could form compact and continuous oxide layer on the steel. Based on all the results, a kinetic model describing nucleation, growth and degradation of the oxide scale formed on surfaces of the two steels was proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. R. Klueh and A. Nelson, Journal of Nuclear Materials 371, 37 (2007).

    Article  Google Scholar 

  2. F. Masuyama, ISIJ International 41, 612 (2001).

    Article  Google Scholar 

  3. O. Eliseeva, V. Tsisar, V. Fedirko and Y. S. Matychak, Materials Science 40, 260 (2004).

    Article  Google Scholar 

  4. O. I. Eliseeva and V. P. Tsisar, Materials Science 43, 230 (2007).

    Article  Google Scholar 

  5. A. Ioltukhovsky, M. Leontyeva-Smirnova, Y. Kazennov, E. Medvedeva, A. Tselishchev, V. Shamardin, A. Povstyanko, S. Ostrovsky, A. Dvoryashin and S. Porollo, Journal of Nuclear Materials 258, 1312 (1998).

    Article  Google Scholar 

  6. A. Ioltukhovskiy, A. Blokhin, N. Budylkin, V. Chernov, M. Leont’eva-Smirnova, E. Mironova, E. Medvedeva, M. Solonin, S. Porollo and L. Zavyalsky, Journal of Nuclear Materials 283, 652 (2000).

    Article  Google Scholar 

  7. A. Ioltukhovskiy, M. Leonteva-Smirnova, M. Solonin, V. Chernov, V. Golovanov, V. Shamardin, T. Bulanova, A. Povstyanko and A. Fedoseev, Journal of Nuclear Materials 307, 532 (2002).

    Article  Google Scholar 

  8. L. Huang, X. Hu, C. Yang, W. Yan, F. Xiao, Y. Shan and K. Yang, Journal of Nuclear Materials 443, 479 (2013).

    Article  Google Scholar 

  9. R. L. Klueh and D. R. Harries, High-Chromium Ferritic and Martensitic Steels for Nuclear Applications, (ASTM, West Conshohocken, 2001).

  10. D. Briggs, J. C. Riviere, in: D. Briggs, M. P. Seah (Eds.), Practical Surface Analysis, Vol. 1, (Chapter 3), (Wiley, Chichester, 1996), p. 85–141.

  11. A. M. Huntz, A. Reckmann, C. Haut, C. Sévérac, M. Herbst, F. C. T. Resende and A. C. S. Sabioni, Materials Science and Engineering 447, 266 (2007).

    Article  Google Scholar 

  12. L. Martinelli, F. Balbaud-Célérier, A. Terlain, S. Bosonnet, G. Picard and G. Santarini, Corrosion Science 50, 2537 (2008).

    Article  Google Scholar 

  13. Y. Niu, S. Wang, F. Gao, Z. Zhang and F. Gesmundo, Corrosion Science 50, 345 (2008).

    Article  Google Scholar 

  14. H. Asteman and M. Spiegel, Corrosion Science 50, 1734 (2008).

    Article  Google Scholar 

  15. F. H. Stott and F. I. Wei, Oxidation of Metals 31, 369 (1989).

  16. N. Babu, R. Balasubramaniam and A. Ghosh, Corrosion Science 43, 2239 (2001).

    Article  Google Scholar 

  17. G. B. Abderrazik, G. Moulin, A. Huntz and E. Young, Solid State Ionics 22, 285 (1987).

    Article  Google Scholar 

  18. J. Nychka and D. Clarke, Oxidation of Metals 63, 325 (2005).

    Article  Google Scholar 

  19. J. Mougin, M. Dupeux, L. Antoni and A. Galerie, Materials Science and Engineering 359, 44 (2003).

    Article  Google Scholar 

  20. I. Kaur and W. Gust, Fundamentals of Grain and Interphase Boundary Diffusion, (Ziegler Press, Stuttgart, 1988).

    Google Scholar 

  21. B. A. Pint and I. G. Wright, Materials Science Forum, (Trans Tech Publications, Durnten, 2004), p. 799.

    Google Scholar 

  22. R. M. Deacon, J. DuPont, C. Kiely, A. Marder and P. Tortorelli, Oxidation of metals 72, 87 (2009).

    Article  Google Scholar 

  23. E. Airiskallio, E. Nurmi, M. H. Heinonen, I. J. Vayrynen, K. Kokko, M. Ropo, M. P. J. Punkkinen, H. Pitkanen, M. Alatalo, J. Kollar, B. Johansson and L. Vitos, Corrosion Science 52, 3394 (2010).

    Article  Google Scholar 

  24. P. C. Tortorici and M. Dayananda, Materials Science and Engineering: A 244, 207 (1998).

    Article  Google Scholar 

  25. L. Mikkelsen, S. Linderoth and J. Bilde-Sørensen, Materials Science Forum, (Trans Tech Publications, Durnten, 2004), p. 117.

    Google Scholar 

  26. R. Pettersson, L. Liu and J. Sund, Corrosion Engineering, Science and Technology 40, 211 (2005).

    Article  Google Scholar 

  27. G. Bamba, Y. Wouters, A. Galerie, F. Charlot and A. Dellali, Acta Materialia 54, 3917 (2006).

    Article  Google Scholar 

  28. S. Liu, D. Tang, H. Wu and L. Wang, Journal of Materials Processing Technology 213, 1068 (2013).

    Article  Google Scholar 

  29. A. Paúl, S. Elmrabet, L. Alves, M. Da Silva, J. Soares and J. Odriozola, Nuclear Instruments and Methods in Physics Research Section B 181, 394 (2001).

    Article  Google Scholar 

  30. F. Riffard, H. Buscail, E. Caudron, R. Cueff, C. Issartel and S. Perrier, Materials Characterization 49, 55 (2002).

    Article  Google Scholar 

  31. B. Li and B. Gleeson, Oxidation of Metals 65, 101 (2006).

    Article  Google Scholar 

  32. V. B. Trindade, U. Krupp, B. Z. Hanjari, S. Yang and H.-J. Christ, Materials Research 8, 371 (2005).

    Article  Google Scholar 

  33. A. M. Huntz, V. Bague, G. Beauple, C. Haut, C. Severac, P. Lecour, X. Longaygue and F. Ropital, Applied Surface Science 207, 255 (2003).

    Article  Google Scholar 

  34. R. K. Wild, Corrosion Science 17, 87 (1977).

    Article  Google Scholar 

  35. R. E. Lobnig, H. P. Schmidt, K. Hennesen and H. J. Grabke, Oxidation of Metals 37, 81 (1992).

    Article  Google Scholar 

  36. M. K. Hossain, Corrosion Science 19, 1031 (1979).

    Article  Google Scholar 

  37. G. R. Holcomb and D. E. Alman, Scripta Materialia 54, 1821 (2006).

    Article  Google Scholar 

  38. K. Hauffe, Oxidation of Metals, (Plenum Press, New York, 1965).

    Google Scholar 

  39. N. Quan and D. Young, Oxidation of Metals 25, 107 (1986).

    Article  Google Scholar 

  40. V. Tolpygo and D. Clarke, Acta Materialia 47, 3589 (1999).

    Article  Google Scholar 

  41. N. Pilling and R. E. Bedworth, Journal of the Institute of Metals 29, 529 (1923).

    Google Scholar 

  42. T. Mitchell, D. Voss and E. Butler, Journal of Materials Science 17, 1825 (1982).

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by a sub-project (XDA03010301, XDA03010302) of Advanced Fission Energy Program-ADS Transmutation System, Chinese Academy of Sciences Strategic Priority Research Program (XDA03010000).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ke Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, Q., Liu, J., Wang, W. et al. High Temperature Oxidation Behavior of SIMP Steel. Oxid Met 83, 521–532 (2015). https://doi.org/10.1007/s11085-015-9532-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-015-9532-9

Keywords

Navigation