Skip to main content
Log in

Structure and Oxidation Behavior of Zr–Y Modified Silicide Coatings Prepared on an Nb–Ti–Si–Cr Based Ultrahigh Temperature Alloy

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

Zr–Y modified silicide coatings have been prepared on an Nb–Ti–Si–Cr based ultrahigh temperature alloy by a pack cementation process. The effects of amount of Zr powder in the pack mixture and co-deposition temperature on the coating structure were assessed. The coatings prepared at 1,250 °C with different amounts of Zr powders in the pack mixture have similar structures, mainly consisting of a thick (Nb,X)Si2 (X represents Ti, Cr and Hf elements) outer layer, a thin (Ti,Nb)5Si4 middle layer and a 1–2 µm thick (Nb,X)5Si3 inner layer. The increased amount of Zr powders in the pack mixtures led to a significant decrease in the coating thickness. The coatings prepared at 1,150 and 1,200 °C have similar structures to that prepared at 1,250 °C. However, when the co-deposition temperature increases to 1,300 and 1,350 °C, a (Ti,Nb)5Si3 outermost layer formed in addition to the three layers mentioned above. The Zr–Y modified silicide coating can protect the base alloy from oxidation at least for 100 h at 1,250 °C in air. The good oxidation resistance of the Zr–Y modified silicide coating is attributed to the formation of a dense scale consisting of SiO2 and TiO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. B. P. Bewlay, M. R. Jackson, J. C. Zhao and P. R. Subramanian, Metallurgical and Materials Transactions A 34, 2043–2052 (2003).

    Article  Google Scholar 

  2. X. P. Guo, L. M. Gao, P. Guan, K. Kusabiraki and H. Z. Fu, Materials Science Forum 539–543, 3690–3695 (2007).

    Article  Google Scholar 

  3. B. V. Cockeram, Surface and Coating Technology 76–77, 20–27 (1995).

    Article  Google Scholar 

  4. S. Mathieu, S. Knittel, M. Francois, L. Portebois, S. Mathieu and M. Vilasi, Corrosion Science 79, 119–127 (2014).

    Article  Google Scholar 

  5. M. Vilasi, M. Francois, R. Podor and J. Steinmetz, Journal of Alloys and Compounds 264, 244–251 (1998).

    Article  Google Scholar 

  6. C. Chen, C. G. Zhou, S. K. Gong, S. S. Li, Y. Zhang and H. B. Xu, Intermetallics 15, 805–809 (2007).

    Article  Google Scholar 

  7. W. Y. Kim, I. D. Yeo, T. Y. Ra, G. S. Cho and M. S. Kim, Journal of Alloys and Compounds 364, 186–192 (2004).

    Article  Google Scholar 

  8. V. D. Yu and L. I. Kitskai, Powder Metallurgy and Metal Ceramics 36, 77–83 (1997).

    Article  Google Scholar 

  9. M. Fukumoto, C. Tachikawame, Y. Matsuzaka and M. Hara, Corrosion Science 56, 105–113 (2012).

    Article  Google Scholar 

  10. M. Z. Alam, A. S. Rao and D. K. Das, Oxidation of Metals 73, 513–530 (2010).

    Article  Google Scholar 

  11. W. Wang, B. F. Yuan and C. G. Zhou, Corrosion Science 80, 164–168 (2014).

    Article  Google Scholar 

  12. X. D. Tian and X. P. Guo, Surface and Coating Technology 203, 1161–1166 (2009).

    Article  Google Scholar 

  13. A. Rahmel and M. Schutze, Oxidation of Metals 38, 255–266 (1992).

    Article  Google Scholar 

  14. P. Zhang and X. P. Guo, Surface and Coating Technology 206, 446–454 (2011).

    Article  Google Scholar 

  15. R. Cueff, H. Buscail, E. Caudron, C. Issartel and F. Riffard, Corrosion Science 45, 1815–1831 (2003).

    Article  Google Scholar 

  16. Y. Q. Qiao and X. P. Guo, Applied Surface Science 256, 7462–7471 (2010).

    Article  Google Scholar 

  17. A. Amadeh, B. Pahlevani and S. Heshmati-Manesh, Corrosion Science 44, 2321–2331 (2002).

    Article  Google Scholar 

  18. F. A. Golightly, F. H. Stott and G. C. Wood, Oxidation of Metals 10, 163–187 (1976).

    Article  Google Scholar 

  19. K. Biswas, G. Rixecker and F. Aldinger, Materials Science and Engineering A 374, 56–63 (2004).

    Article  Google Scholar 

  20. R. Thanneeru, S. Patil, S. Deshpande and S. Seal, Acta Materialia 55, 3457–3466 (2007).

    Article  Google Scholar 

  21. D. P. Moon, Journal of Materials Science & Technology 5, 754–764 (1989).

    Article  Google Scholar 

  22. K. P. R. Reddy, J. L. Smialek and A. R. Cooper, Oxidation of Metals 17, 429–449 (1982).

    Article  Google Scholar 

  23. D. Q. Li, H. B. Guo, D. Wang, T. Zhang, S. K. Gong and H. B. Xu, Corrosion Science 66, 125–135 (2013).

    Article  Google Scholar 

  24. S. J. Hong, G. H. Hwang, W. K. Han, K. S. Lee and S. G. Kang, Intermetallics 18, 864–870 (2010).

    Article  Google Scholar 

  25. I. M. Allam, D. P. Whittle and J. Stringer, Oxidation of Metals 12, 35–66 (1978).

    Article  Google Scholar 

  26. X. Li and X. P. Guo, Acta Metallurgica Sinica. 48, 1394–1402 (2012).

    Google Scholar 

  27. X. D. Tian and X. P. Guo, Surface and Coating Technology 204, 313–318 (2009).

    Article  Google Scholar 

  28. B. V. Cockeram and R. A. Rapp, Metallurgical and Materials Transactions A 26, 777–791 (1995).

    Article  Google Scholar 

  29. M. Qiao and C. G. Zhou, Corrosion Science 75, 454–460 (2013).

    Article  Google Scholar 

  30. Z. D. Xiang, S. R. Rose and P. K. Datta, Materials and Engineering A 356, 181–189 (2003).

    Article  Google Scholar 

  31. Z. D. Xiang and P. K. Datta, Acta Materialia 54, 4453–4463 (2006).

    Article  Google Scholar 

  32. M. Sanjib, S. Indrakumar, S. Indradev and B. Parag, Journal of the Electrochemical Society D 155, 734–741 (2008).

    Google Scholar 

  33. R. Bianco, R. A. Rapp and N. S. Jacobson, Oxidation of Metals 38, 33–43 (1992).

    Article  Google Scholar 

  34. Y. J. Liu, L. J. Zhang, T. Y. Pan, D. Yu and Y. Ge, Calphad 32, 455–461 (2008).

    Article  Google Scholar 

  35. C. Milanese, V. Buscaglia, F. Maglia and U. A. Tamburini, Acta Materialia 51, 4837–4846 (2003).

    Article  Google Scholar 

  36. B. H. Guo and X. P. Guo, Materials Science & Engineering A 617, 39–45 (2014).

    Article  Google Scholar 

  37. K. Zelenitsas and P. Tsakiropoulos, Intermetallics 13, 1079–1095 (2005).

    Article  Google Scholar 

  38. I. Grammenos and P. Tsakiropoulos, Intermetallics 18, 242–253 (2010).

    Article  Google Scholar 

  39. A. Vazquez and S. K. Varma, Journal of Alloys and Compounds 509, 7027–7033 (2011).

    Article  Google Scholar 

  40. P. Zhang and X. P. Guo, Corrosion Science 53, 4291–4299 (2011).

    Article  Google Scholar 

  41. R. C. Wang, Z. P. Jin and C. L. Liu, Journal of Central South University of Technology 33, 385–388 (2002).

    Google Scholar 

  42. J. C. Zhao, M. R. Jackson and L. A. Peluso, Materials Science and Engineering A 372, 21–27 (2004).

    Article  Google Scholar 

  43. G. Shao, Intermetallics 12, 655–664 (2004).

    Article  Google Scholar 

  44. L. R. Xiao, L. L. Xu and D. Q. Yi, Chinese journal of rare metals 28, 257–262 (2008).

    Google Scholar 

  45. L. T. Zhang and J. S. Wu, Scripta Materialia 38, 307–313 (1998).

    Article  Google Scholar 

  46. L. X. Zhao, X. P. Guo and Y. Y. Jiang, The Chinese Journal of Nonferrous Metals 17, 596–601 (2007).

    Google Scholar 

  47. X. P. Guo, L. X. Zhao, P. Guan and K. Kusabiraki, Materials Science Forum 561–565, 371–374 (2007).

    Article  Google Scholar 

  48. F. Zhang, L. T. Zhang, A. D. Shan and J. S. Wu, Journal of Alloys and Compounds 422, 308–312 (2006).

    Article  Google Scholar 

  49. B. A. Pint, Oxidation of Metals 45, 1–37 (1996).

    Article  Google Scholar 

  50. W. G. Kingery, H. K. Bowen and D. R. Uhlman, Introduction to ceramics. (Wiley, New York, 1975), p. 240.

  51. F. Gesmundo and P. Y. Hou, Oxidation of Metals 59, 63–81 (2003).

    Article  Google Scholar 

  52. H. B. Guo, D. Q. Li, H. Peng, Y. J. Cui and S. K. Gong, Corrosion Science 53, 1050–1059 (2011).

    Article  Google Scholar 

  53. Y. Q. Qiao, X. P. Guo and X. Li, Corrosion Science 2014. doi:10.1016/j.corsci.2014.10.053.

    Google Scholar 

  54. Y. H. Liu, A. J. Thom, M. J. Kramer and M. Akinc, International Symposium on Processing and Fabrication of Advanced Materials. XI, 258–271 (2003).

    Google Scholar 

  55. D. L. Douglass, Journal of the Less Common Metals 5, 151–157 (1963).

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 51371145, 51431003, 51401166) and the Programme of Introducing Talents of Discipline to Universities (No. B080401).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiping Guo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Guo, X. & Qiao, Y. Structure and Oxidation Behavior of Zr–Y Modified Silicide Coatings Prepared on an Nb–Ti–Si–Cr Based Ultrahigh Temperature Alloy. Oxid Met 83, 253–271 (2015). https://doi.org/10.1007/s11085-014-9519-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-014-9519-y

Keywords

Navigation