Skip to main content
Log in

Oxidation Behavior of the Niobium-Modified MAR-M247 Superalloy at 1,000 °C in Air

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

MAR-M247 superalloy has excellent mechanical properties and oxidation resistance. The aim of this work was to evaluate the oxidation behavior of a Nb-modified MAR-M247 superalloy (10.2 wt% Co; 10.2 W; 8.5 Cr; 5.6 Al; 1.6 Nb; 1.4 Hf; 1.1 Ti; 0.7 Mo; 0.15 C; 0.06 Zr; 0.02 B; Ni balance). The samples were subjected to oxidation tests in air at 1,000 °C up to 240 h and the weight gain was measured every 24 h. The material in the as-cast condition as well as those from the oxidation tests were characterized with the aid of SEM/EDS and X-ray diffraction (XRD). The results showed that the n value and the parabolic rate constant (k) for the MAR-M247(Nb) superalloy at 1,000 °C were about 0.1 and 2.8 × 10−8 mg2cm−4s−1, respectively. The microstructural characterization showed the formation of NiO oxides in the outer layer, Cr2O3, TiO2, CoO, (Ni,Co)Cr2O4 spinels, W20O58 and HfO2 particles in the intermediate layer and Al2O3 in the inner layer and in the γ’ depleted zone of the material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. X. Lu, S. Tian, X. YU and C. Wang, Rare Metals 30, 439 (2011).

    Article  Google Scholar 

  2. C. T. Liu, J. Ma and X. F. Sun, Journal of Alloys and Compounds 491, 522 (2010).

    Article  Google Scholar 

  3. F. H. Latief, K. Kakehi and X. Fu, International Journal of Electrochemical Science 7, 7608 (2012).

    Google Scholar 

  4. E. H. Bricknell and D. A. Woodford, Metallurgical Transactions 12A, 425 (1981).

    Article  Google Scholar 

  5. K. Sadananda and P. Shahinian, Materials Science and Engineering 43, 159 (1980).

    Article  Google Scholar 

  6. P. Kofstad, A. Rahmel, R. A. Rapp and D. L. Douglas, Oxidation of Metals 32, 125 (1989).

    Article  Google Scholar 

  7. J. J. Barnes, S. K. Srivastava, in Proceedings of Superalloys, TMS, Warrendale, PA, 1992, p. 825.

  8. Hui Mei, Yanan Liu and Laifei Cheng, The Journal of Materials Science 47, 2278 (2012).

    Article  Google Scholar 

  9. F. A. Khalid, N. Hussain and K. A. Shahid, Journal of Material Sciences and Engineering 265, 87 (1999).

    Article  Google Scholar 

  10. P. R. S. Azevedo e Silva, R. Baldan, C. A. Nunes, G. C. Coelho and A. M. S. Costa, Materials Characterization 75, 214 (2013).

    Article  Google Scholar 

  11. C.-J. Wang and J.-S. Lin, Materials Chemistry and Physics 76, 123 (2002).

    Article  Google Scholar 

  12. D. K. Das, V. Singh and S. V. Joshi. The cyclic oxidation performance of aluminide and Pt-aluminide coatings on cast Ni-based superalloy CM-247, Functional Coatings: Research Summary. JOM-e 52 (2000).

  13. Y. Bourhis and C. St, Oxidation of Metals 9, 507 (1975).

    Article  Google Scholar 

  14. C. L. Angerman, Oxidation of Metals 5, 149 (1972).

    Article  Google Scholar 

  15. J. G. Duh and C. J. Wang, The Journal of Materials Science 25, 268 (1990).

    Article  Google Scholar 

  16. L. Huang, X. F. Sun, H. R. Guan and Z. Q. Hu, Oxidation of Metals 65, 207 (2006).

    Article  Google Scholar 

  17. H. Wei, G. C. Hou, X. F. Sun, H. R. Guan and Z. Q. Hu, Oxidation of Metals 68, 149 (2007).

    Article  Google Scholar 

  18. L. Huang, X. F. Sun, H. R. Guan and Z. Q. Hu, Surface and Coatings Technology 200, 6863 (2006).

    Article  Google Scholar 

  19. R. Molins, I. Rouzou and P. Hou, Oxidation of Metals 65, 263 (2006).

    Article  Google Scholar 

  20. F. A. Khalid and S. E. Benjamin, Oxidation of Metals 54, 63 (2000).

    Article  Google Scholar 

  21. K. Godlewski and E. Godlewska, Oxidation of Metals 26, 125 (1986).

    Article  Google Scholar 

  22. M. H. Li, X. F. Sun, T. Jin, H. R. Guan and Z. Q. Hu, Oxidation of Metals 59, 591 (2003).

    Article  Google Scholar 

  23. C. M. Younes, G. C. Allen and J. A. Nicholson, Corrosion Engineering, Science and Technology 42, 80 (2007).

    Article  Google Scholar 

  24. O. Kubaschewski and B. E. Hopkins, Oxidation of Metals and Alloys, (Butterworths, London, 1962).

    Google Scholar 

  25. K. Hauffe and G. H. Meier, Oxidation of Metals, (Plenum, New York, 1966).

    Google Scholar 

  26. M. Li, High Temperature Corrosion of Metals, (Metallurgical Industry Press, Beijing, 2001).

    Google Scholar 

  27. H. M. Hindam and W. W. Smeltzer, Journal of the Electrochemical Society 127, 1622 (1980).

    Article  Google Scholar 

  28. Li Liu, Ying Li and Fuhui Wang, Materials Science Forum 595, 87 (2008).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renato Baldan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baldan, R., Guimarães, R., Nunes, C.A. et al. Oxidation Behavior of the Niobium-Modified MAR-M247 Superalloy at 1,000 °C in Air. Oxid Met 83, 151–166 (2015). https://doi.org/10.1007/s11085-014-9517-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-014-9517-0

Keywords

Navigation