Skip to main content
Log in

Correlation Between Resistance to Carburization and Resistance to Oxidation of Selected High-Temperature Alloys

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

It is shown that a one-to-one correspondence exists between the resistance to carburization and resistance to oxidation of selected Cr2O3- and Al2O3-forming alloys as determined from carburization and oxidation tests. Although the Cr2O3-forming alloys are unable to maintain protective scales in an environment characterized by low oxygen potential and high carbon activity, the kinetics of carburization are found to be functions of the exact chemical composition. Ingress of carbon can lead to precipitation of carbides, particularly those based upon the Cr7C3 and Cr23C6 compositions with the latter enhancing the precipitation of CrFe sigma phase. In contrast, an Al2O3-forming alloy with balanced Ni, Cr and Al contents is found to have superior resistance to carburization due to: (i) formation of highly protective Y-modified oxide, and (ii) higher solubility of C. It is concluded that Al2O3-forming alloys can have a great deal of potential in applications requiring high resistance to carburization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. J. F. Norton, Carburization in High Temperature Process Plant Materials (Commission of the European Community Report No. EUR 7773, Luxembourg 1981).

  2. C. M. Chun, S. Desai, F. Hershkowitz and T. A. Ramanarayanan, Meter and Corrosion 65, 281 (2014).

    Google Scholar 

  3. G. Y. Lai, High Temperature Corrosion and Materials Applications, (ASM International, Materials Park, OH, 2007), p. 97.

    Google Scholar 

  4. G. Y. Lai, High-Temperature Corrosion of Engineering Alloys, (ASM International, Materials Park, OH, 1990), p. 47.

    Google Scholar 

  5. H. J. Grabke, Materiali in Technologue 36, 297 (2002).

    Google Scholar 

  6. J. Grabke, Craburization: A High Temperature Corrosion Phenomenon (Elsevier Science and Technology, Amsterdam, 1998) p. 3.

  7. L. M. Shen, J. M. Gong and H. S. Liu, Materials at High Temperature 31, 148 (2014).

    Article  Google Scholar 

  8. J. Yan, Y. Gao, F. Yang, Y. Bai, Y. Liu, C. Yao, S. Hou and G. Liu, Corrosion Science 67, 161 (2013).

    Article  Google Scholar 

  9. L. H. de Almeida and A. F. Ribeiro, I.L May. Materials Characterization 49, 219 (2003).

    Article  Google Scholar 

  10. X. Q. Wu, H. M. Jing, Y. G. Zheng, Z. M. Yao, W. Ke and Z. Q. Hu, Materials Science and Engineering A 293, 252 (2000).

    Article  Google Scholar 

  11. R. Petkovic-Luton and T. A. Ramanarayanan, Oxidation of Metals 34, 381 (1990).

    Article  Google Scholar 

  12. T. A. Ramanarayanan, R. Petkovic-Luton, J. D. Munford and A. Ozecin, Material and Corrosion 49, 226 (1998 ).

    Article  Google Scholar 

  13. G. M. Smith, D. J. Young and D. L. Trimm, Oxidation of Metals 18, 229 (1982).

    Article  Google Scholar 

  14. J. F. Norton, L. Blidegn, S. Canetoli and P. D. Frampton, Werkstoffe und Korrosion 32, 467 (1981).

    Article  Google Scholar 

  15. A. Schnaas and H. J. Grabke, Oxidation of Metals 12, 387 (1978).

    Article  Google Scholar 

  16. R. Yin, Materials at High Temperatures 21, 205 (2004). 800H, 310.

    Article  Google Scholar 

  17. R. Yin, Corrosion and Science 47, 1896 (2005).

    Article  Google Scholar 

  18. R. Yin, Materials Science and Engineering A 391, 19 (2005).

    Article  Google Scholar 

  19. R. C. Yin, I. M. Allam and A. Al-Farayedhi, Oxidation of Metals 60, 315 (2003).

    Article  Google Scholar 

  20. P. J. Smith, O. Vanderbiest and J. Corish, Oxidation of Metals 24, 47 (1985).

    Article  Google Scholar 

  21. P. J. Smith, O. Vanderbiest and J. Corish, Oxidation of Metals 24, 277 (1985).

    Article  Google Scholar 

  22. W. F. Chu and A. Rhamel, Oxidation of Metals 15, 331 (1981).

    Article  Google Scholar 

  23. Y. Nishiyama and N. Otsuka, Corrosion 61, 84 (2005).

    Article  Google Scholar 

  24. Y. Nishiyama, N. Otsuka and T. Nishizawa, Corrosion 59, 688 (2003).

    Article  Google Scholar 

  25. R. F. A. Pettersson, J. Enecker and L. Liu, Materials at High Temperature 22, 269 (2005).

    Article  Google Scholar 

  26. R. Peraldi and B. A. Pint, Oxidation of Metals 61, 463 (2004).

    Article  Google Scholar 

  27. T. D. Nguyen, J. Zhang and D. J. Young, Oxidation of Metals 81, 549 (2014).

    Article  Google Scholar 

  28. H. M. Tawancy and N. M. Abbas, Journal of Material Science 27, 1061 (1992).

    Article  Google Scholar 

  29. M.F. Rothman, G.Y. Lai, M.M. Antony, A.E. Miller, in Proceedings of the 9th International Congress on Metallic Corrosion (National Research Council, Canada 1984) pp. 66–72.

  30. H. M. Tawancy and N. Sridhar, Oxidation of Metals 37, 143 (1992).

    Article  Google Scholar 

  31. F. Rouessac, A. Rouessac, Chemical Analysis: Modern Instrumentation Methods and Techniques (Wiley, Hoboken, NJ, 2007) p. 309 and. 447.

  32. G.Y. Lai, High Temperature Corrosion in Energy Systems, ed. M.F. Rothman (TMS-AIME, Warrendale, Pennsylvania 1985) p. 564.

  33. G.Y. Lai, M.F. Rothman, Corrosion 84 (NACE, Houston, TX, 1984) paper No. 11.

  34. ASTM G54-84, Standard Practice for Simple Oxidation Testing (1996).

  35. P. J. Goodhew, Specimen Preparation for Transmission Electron Microscopy of Materials, (Oxford University Press, Oxford, 1984), p. 21.

    Google Scholar 

  36. J. M. Harrison, J. F. Norton and R. T. Derricott, Materials and Corrosion. Werkst. Korros. 30, 785 (1979).

    Article  Google Scholar 

  37. K. Natesan and T. F. Kassner, Metallurgical Transaction 4, 2557 (1973).

    Article  Google Scholar 

  38. J. C. Greenbank, The Journal of the Iron and Steel Institute 210, 111 (1970).

    Google Scholar 

  39. H. M. Tawancy and N. M. Abbas, Journal of Materials Science 40, 2085 (2005).

    Article  Google Scholar 

  40. I. M. Allam, Oxidation of Metals 72, 127 (2007).

    Article  Google Scholar 

  41. T. A. Ramanarayanan, R. A. Ayer, R. Petkovic-Luton and D. P. Leta, Oxidation of Metals 29, 445 (1988).

    Article  Google Scholar 

  42. G.C. Wood, F.H. Stott, in High Temperature Corrosion, ed. R.A. Rapp (NCE-6, Houston, Texas, 1983) p. 227.

  43. H. Hindam and D. P. Whittle, Oxidation of Metals 18, 245 (1982).

    Article  Google Scholar 

  44. A.M. Huntz, in The Role of Active Elements in the Oxidation Behavior of Metals and Alloys, ed. E. Lang (Elsevier Applied Science, London, 1989), p. 81.

  45. A. M. Huntz, Materials Science and Engineering 87, 271 (1987).

    Article  Google Scholar 

  46. F. H. Stott and G. C. Wood, Materials Science and Engineering 87, 267 (1987).

    Article  Google Scholar 

  47. D. P. Whittle and J. Stringer, Philosophical Transactions of the Royal Society. London A295, 309 (1980).

    Google Scholar 

  48. J. W. Edington, Typical Electron Microscope Investigations, (N.V. Philips, Eindhoven, 1976), p. 33.

    Google Scholar 

  49. J. B. Mitchell, Metallography 8, 5 (1975).

    Article  Google Scholar 

  50. F. R. Beckitt and B. R. Clark, Acta Materialia 15, 113 (1967).

    Article  Google Scholar 

  51. M. H. Lewis and B. Hattersley, Acta Materialia 13, 1159 (1965).

    Article  Google Scholar 

  52. G. Wallwork, J. Croll, in Reviews of High Temperature Materials, ed. J. Newkirk (Freund Publishing House, London, 1976) p. 69.

Download references

Acknowledgments

It is a pleasure to acknowledge the continued support of King Fahd University of Petroleum and Minerals.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. M. Tawancy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tawancy, H.M. Correlation Between Resistance to Carburization and Resistance to Oxidation of Selected High-Temperature Alloys. Oxid Met 83, 167–185 (2015). https://doi.org/10.1007/s11085-014-9513-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-014-9513-4

Keywords

Navigation