Skip to main content
Log in

High Temperature Oxidation Stability of Aerodynamically Optimised Riblets for Blades of Aero-engine Applications

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

The mechanism of nature’s way of friction reduction and aerodynamical optimisation is applied worldwide. There is ample literature on investigations and measurement of skin friction reduction in the boundary layer over flat plates and on turbo machinery type blades. When using a surface with riblet structures, the turbulent momentum transfer at the wall which is responsible for the skin friction is hampered. This paper deals with the oxidation and characterisation of riblets with micrometer dimensions for aerodynamically optimised high temperature turbine applications. Riblets were fabricated on EB-PVD NiCoCrAlY coatings by using a pico-second laser. The high temperature oxidation stability of the riblets was tested by conducting cyclic oxidation tests. The temperatures were selected as 900 and 1100 °C and the time of oxidation was varied between 1 and 1,000 cycles. The thermocyclic tests at 900 °C proved that the riblets are stable even after 1,000 cycles and at 1,100 °C the stability is permitted to until only 100 cycles. With few modifications in the structuring process this stability can be further improved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. N. P. Padture, M. Gell and E. H. Jordan, Science 296, 280 (2002).

    Article  Google Scholar 

  2. W. G. Sloof and T. J. Nijdam, International Journal of Materials Research 100, 1318 (2009).

    Article  Google Scholar 

  3. J. R. Nicholls, MRS Bulletin 28, 659 (2003).

    Article  Google Scholar 

  4. T. Xu, S. Faulhaber, C. Mercer, M. Maloney and A. Evans, Acta Materialia 52, 1439 (2004).

    Article  Google Scholar 

  5. Y. Zhang, B. A. Pint, J. A. Haynes and I. G. Wright, Surface & Coatings Technology 200, 1259 (2005).

    Article  Google Scholar 

  6. I. G. Wright and B. A. Pint, Proceedings of the Institution of Mechanical Engineers Part A-Journal of Power and Energy 219, 101 (2005).

    Article  Google Scholar 

  7. B. A. Pint, I. G. Wright, W. Y. Lee, Y. Zhang, K. Prussner and K. B. Alexander, Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing 245, 201 (1998).

    Article  Google Scholar 

  8. W. Hage, Zur Widerstandsverminderung von dreidimensionalen Riblet-Strukturen und anderen Oberflächen, Dissertation, TU, Berlin, 2004.

  9. M. J. Walsh, Journal of Aircraft 27, 572 (1990).

    Article  Google Scholar 

  10. D. W. Bechert, M. Bruse and W. Hage, Experiments in Fluids 28, 403 (2000).

    Article  Google Scholar 

  11. C. Fang, T. Yan-Ping, and C. Mao-Zhang, in Proceedings of ASME Gas Turbine and Aeroengine Congress and Exposition 1990, 90-GT-207, (1990).

  12. M. Boese and L. Fottner, in Proceedings of ASME Turbo Expo 2002, GT-2002-30438 (2002).

  13. C. C. Büttner and U. Schulz, Advanced Engineering Materials 13, 288 (2011).

    Article  Google Scholar 

  14. C. Büttner, Shark Skin Inspired Surfaces for Aerodynamically Optimized Hugh Temperature Applications-Fabrication, Oxidation, Characterization, PhD thesis, RWTH Achen (2011).

  15. T. J. Nijdam and W. G. Sloof, Surface & Coatings Technology 201, 3894 (2006).

    Article  Google Scholar 

  16. T. J. Nijdam, G. H. Marijnissen, E. Vergeldt, A. B. Kloosterman and W. G. Sloof, Oxidation of Metals 66, 269 (2006).

    Article  Google Scholar 

  17. A. Gil, V. Shemet, R. Vassen, M. Subanovic, J. Toscano, D. Naumenko, L. Singheiser and W. J. Quadakkers, Surface & Coatings Technology 201, 3824 (2006).

    Article  Google Scholar 

  18. J. Toscano, R. Vassen, A. Gil, M. Subanovic, D. Naumenko, L. Singhelser and W. Quadakkers, Surface & Coatings Technology 201, 3906 (2006).

    Article  Google Scholar 

  19. K. Fritscher and C. Leyens, Materialwissenschaft Und Werkstofftechnik 28, 384 (1997).

    Article  Google Scholar 

  20. T. J. Nijdam, L. P. H. Jeurgens, J. H. Chen and W. G. Sloof, Oxidation of Metals 64, 355 (2005).

    Article  Google Scholar 

  21. U. Schulz, K. Fritscher and A. Ebach-Stahl, Surface & Coatings Technology 203, 449 (2008).

    Article  Google Scholar 

  22. T. J. Nijdam and W. G. Sloof, Materials at High Temperatures 22, 551 (2005).

    Article  Google Scholar 

  23. J. D. Kuenzly and D. L. Douglass, Oxidation of Metals 8, 139 (1974).

    Article  Google Scholar 

  24. H. M. Tawancy, N. M. Abbas and A. Bennett, Surface & Coatings Technology 68, 10 (1994).

    Article  Google Scholar 

  25. W. Braue, U. Schulz, K. Fritscher, C. Leyens and R. Wirth, Materials at High Temperatures 22, 393 (2005).

    Article  Google Scholar 

  26. H. Lau, Surface & Coatings Technology 235, 121 (2013).

    Article  Google Scholar 

  27. S. Sacre, U. Wienstroth, H. G. Feller and L. K. Thomas, Journal of Materials Science 28, 1843 (1993).

    Article  Google Scholar 

  28. M. S. D. Naumenko, M. Kamruddin, E. Wessel, L. Niewolak, L. Singheiser, and W.J. in Proceedings of Int. Charles Parsons Turbine Conference (2007), p. 193.

  29. E. A. G. Shillington and D. R. Clarke, Acta Materialia 47, 1297 (1999).

    Article  Google Scholar 

  30. B. Saruhan, U. Schulz, and M. Bartsch, in Layered, Functional Gradient Ceramics, and Thermal Barrier Coatings: Design, Fabrication and Applications, eds. M. Anglada, E. Jimenez Pique, and P. Hvizdos, Key Engineering Materials, (2007), p. 137.

  31. M. Karadge, X. Zhao, M. Preuss and P. Xiao, Scripta Materialia 54, 639 (2006).

    Article  Google Scholar 

  32. J. A. Nychka, T. Xu, D. R. Clarke and A. G. Evans, Acta Materialia 52, 2561 (2004).

    Article  Google Scholar 

  33. J. Toscano, Influence of Composition and Processing on the Oxidation Behaviour of MCrAlY Coatings for TBC Applications, PhD thesis, RWTH Aachen (2008).

  34. A. U. Munawar, U. Schulz, G. Cerri and H. Lau, Surface and Coatings Technology 245, 92 (2014).

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to express their gratitude to A. Handwerk for thermal cycling tests and D. Peters for EB-PVD experiments. The authors would like to thank the DFG under SPP1299 for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Naraparaju.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naraparaju, R., Schulz, U. & Büttner, C.C. High Temperature Oxidation Stability of Aerodynamically Optimised Riblets for Blades of Aero-engine Applications. Oxid Met 83, 133–150 (2015). https://doi.org/10.1007/s11085-014-9512-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-014-9512-5

Keywords

Navigation