Skip to main content
Log in

A Tension Analysis During Oxidation of Pure Aluminum Powder Particles: Non-isothermal Condition

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

In this research the role of stress acting on the rupture of the oxide film on aluminum powder particles during oxidation under non-isothermal conditions was studied. For this purpose, aluminum particles went under TG-DTA heat analysis tests at different heating rates up to 1,300 °C. The results obtained from these tests showed that the major part of the oxidation took place at non-isothermal conditions close to 1,000 °C. The scanning electron microscope also provided information about the rupture behavior of the oxide film under the effect of the stresses resulting during this intense oxidation. The finite element method was employed to study the intensity of the factors generating stress on the oxide film. The results of this simulation regarding the analysis of the imposed stresses showed that the expansion of the melt inside the film and also the shrinkage resulting from the transformation of the oxide structure from γ to α could impose a high rate of stress on this crust during the heating of aluminum powder particles in a non-thermal manner close to the above temperature. Also, with regard to the results obtained from this stress analysis, it was specified that although the rate of the stress resulting from the expansion of the melt inside the oxide film relative to the stress resulting from its shrinkage was much higher quantitatively, this shrinkage was also an important factor in the direction of activating the defects present in the structure of the oxide film played a determining role in the occurrence of its rupture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. S. W. Chung, E. A. Guliants, C. E. Bunker, P. A. Jelliss and S. W. Buckner, Size-dependent nanoparticle reaction enthalpy: oxidation of aluminum nanoparticles. Journal of Physics and Chemistry of Solids 72, 714 (2011).

  2. E. L. Dreizin, Metal-based reactive nanomaterials. Progress in Energy and Combustion Science 35, 141 (2009).

  3. L. Galfetti, L. T. DeLuca, F. Severini, G. Colombo, L. Meda and G. Marra, Pre and post-burning analysis of nano-aluminized solid rocket propellants. Aerospace Science and Technology 11, 26 (2007).

    Article  Google Scholar 

  4. F. Maggi, A. Bandera, L. Galfetti, L. T. De Luca and T. L. Jackson, Efficient solid rocket propulsion for access to space. Acta Astronautica 66, 1563 (2010).

    Article  Google Scholar 

  5. L. Galfetti, L. T. De Luca, F. Severini, L. Meda, G. Marra, M. Marchetti, M. Regi and S. Bellucci, Nanoparticles for solid rocket propulsion. Journal of Physics: Condensed Matter 18, S1991 (2006).

    Google Scholar 

  6. S. Hasani, M. Panjepour and M. Shamanian, A study of the effect of aluminum on MoSi2 formation by self-propagation high-temperature synthesis. Journal of Alloys and Compounds 502, 80 (2010).

    Article  Google Scholar 

  7. S. Hasani, M. Panjepour and M. Shamanian, Effect of atmosphere and heating rate on mechanism of MoSi2 formation during self-propagating high-temperature synthesis. Journal of Thermal Analysis and Calorimetry 107, 1073 (2012).

    Article  Google Scholar 

  8. H. Y. Jeong, K. P. So, J. J. Bae, S. H. Chae, T. H. Ly, T. H. Kim, D. H. Keum, C. K. Kim, J. S. Hwang, Y. J. Choi and Y. H. Lee, Tailoring oxidation of Al particles morphologically controlled by carbon nanotubes. Energy 55, 1143 (2013).

    Article  Google Scholar 

  9. J. Cai, Y. Li, J. Wu and G. Ling, Preparation of self-healing a-Al2O3films by low temperature thermal oxidation. Oxidation of Metals 81, 253 (2014).

  10. F. Velasco, S. Guzman, C. Moral and A. Bautista, Oxidation of micro-sized aluminium particles: hollow alumina spheres, Oxidation of Metals 80, 403 (2013).

  11. S. Hasani, M. Panjepour and M. Shamanian, The oxidation mechanism of pure aluminum powder particles. Oxidation of Metals 78, 179 (2012).

    Article  Google Scholar 

  12. S. Hasani, M. Panjepour and M. Shamanian, Non-isothermal kinetic analysis of oxidation of pure aluminum powder particles, Oxidation of Metals 81, 299 (2014).

  13. V. Kolarik, M. M. Juez-Lorenzo and H. Fietzek, Oxidation of micro-sized spherical aluminium particles. Materials Science Forum 696, 290 (2011).

    Article  Google Scholar 

  14. L. P. H. Jeurgens, W. G. Sloof, F. D. Tichelaar and E. J. Mittemeijer, Thermodynamic stability of amorphous oxide films on metals: Application to aluminum oxide films on aluminum substrates. Physical Review B 62, 4707 (2000).

    Article  Google Scholar 

  15. L. P. H. Jeurgens, W. G. Sloof, F. D. Tichelaar and E. J. Mittemeijer, Structure and morphology of aluminum-oxide films formed by thermal oxidation of aluminum. Thin Solid Films 418, 89 (2002).

    Article  Google Scholar 

  16. L. P. H. Jeurgens, W. G. Sloof, F. D. Tichelaar and E. J. Mittemeijer, Composition and chemical state of the ions of aluminum-oxide films formed by thermal oxidation of aluminum. Surface Science 506, 313 (2002).

    Article  Google Scholar 

  17. L. P. H. Jeurgens, W. G. Sloof, F. D. Tichelaar and E. J. Mittemeijer, Growth kinetics and mechanisms of aluminum-oxide films formed by thermal oxidation of aluminum. Journal of Applied Physics 92, (3), 1649 (2002).

    Article  Google Scholar 

  18. O. A. Riano, J. Wadsworth and O. D. Sherby, Deformation of fine-grained alumina by grain boundary sliding accommodated by slip. Acta Materialia 51, 3617 (2003).

    Article  Google Scholar 

  19. I. Levin and D. Brandon, Metastable alumina polymorphs: Crystal structures and transition sequences. Journal of American Ceramic Society 81, (8), 1995 (1998).

    Article  Google Scholar 

  20. M. A. Trunov, M. Schoenitz, X. Zhu and E. L. Dreizin, Effect of polymorphic phase transformations in Al2O3 film on oxidation kinetics of aluminum powders. Combustion and Flame 140, 310 (2005).

    Article  Google Scholar 

  21. M. A. Trunov, M. Schoenitz and E. L. Dreizin, Ignition of aluminum powders under different experimental conditions. Propellants, Explosives, Pyrotechnics 30, (1), 36 (2005).

    Article  Google Scholar 

  22. E. A. Brandes and G. B. Brook, Smithells Metals Reference Book, 7th ed, (Butterworth-Heinemann, Oxford, 1992).

    Google Scholar 

  23. Z. L. Greer, Temperature, Frequency, and Young’s Modulus of an Aluminum Tuning Fork, International School Bangkok. Journal of Physics 5, (1), 1 (2011).

    Google Scholar 

  24. G. Yamaguchi and H. Yanagida, Thermal Effects on the Lattices of η and γ Aluminum Oxide. Bulletin of Chemistry Society of Japan 37, 1964 (1229).

    Article  Google Scholar 

  25. J. R. Kissell and R. L. Ferry, Aluminum Structures; A Guide to Their Specifications and Design, 2nd ed, (John Wiley & Sons, Inc., 2002), pp. 101–103.

  26. J. G. Kaufman and E. L. Rooy, Aluminum Alloy Castings Properties, Processes, and Applications, (ASM International, Materials Park, 2004).

    Google Scholar 

  27. G. Mathers, The Welding of Aluminum and its Alloys, (Cambridge, England, 2000), p. 226.

  28. J. R. Davis, Aluminum and Aluminum Alloys, The Materials Information Society, (ASM International, 1998), pp. 81–85.

  29. T. C. Chou, T. G. Nieh and S. D. Mc, Adaras, and G.M. Pharr, Microstructures and Mechanical Properties of Thin Films of Aluminum Oxide. Scripta Metallurgica 25, 2203 (1991).

    Article  Google Scholar 

  30. P. Boch, J. C. Niepce, Ceramic Materials; Processes, Properties and Applications, ISTE (2007).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Panjepour.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hasani, S., Soleymani, A.P., Panjepour, M. et al. A Tension Analysis During Oxidation of Pure Aluminum Powder Particles: Non-isothermal Condition. Oxid Met 82, 209–224 (2014). https://doi.org/10.1007/s11085-014-9488-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-014-9488-1

Keywords

Navigation