Skip to main content
Log in

Low-Temperature Oxidation of Cu(100), Cu(110) and Cu(111)

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

To better understand the oxidation kinetics of Cu, the oxidation kinetics of Cu(111) in the low-temperature range of 313–453 K were studied using spectroscopic ellipsometry. The low-temperature oxidations of Cu(100) and Cu(110) were also investigated and compared against Cu(111). Similar to the kinetics of Cu(111), those of Cu(100) and Cu(110) depend on the oxide thickness, which exhibit logarithmic behavior for oxide thicknesses under 5 nm, cubic behavior in the range of 5–25 nm, and parabolic behavior over 25 nm. A diffusion model was developed to simulate the kinetics of Cu(100), Cu(110) and Cu(111).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. H. Takasago, K. Adachi and M. Takeda, A copper/polyimide metal-base packing technology. J. Electron. Mater. 18, (2), 319 (1989).

    Article  Google Scholar 

  2. R. H. Havemann and J. A. Hutchby, High-performance interconnects: An integration overview. Proc. IEEE. 89, 586 (2001).

    Article  Google Scholar 

  3. Y. Z. Hu, R. Sharangpani and S. P. Tay, Kinetic investigation of copper film oxidation by spectroscopic ellipsometry and reflectometry. J. Vac. Sci. Technol. A. 18, (5), 2527 (2000).

    Article  Google Scholar 

  4. T. K. S. Wong, Time dependent dielectric breakdown in copper low-k interconnects: Mechanisms and reliability models. Materials 5, (9), 1602 (2012).

    Article  Google Scholar 

  5. J. P. Singh, T.-M. Lu and G.-C. Wang, Field-induced cation migration in Cu oxide films by in situ scanning tunnelling microscopy. Appl. Phys. Lett. 82, (26), 4674 (2003).

    Article  Google Scholar 

  6. G. Papadimitropoulos, N. Vourdas, V Em Vamvakas and D. Davazoglou, Optical and structural properties of copper oxide thin films grown by oxidation of metal layers. Thin Solid Films 515, (4), 2428 (2006).

    Article  Google Scholar 

  7. R. J. Iwanowski and D. Trivih, Cu/Cu2O Schottky barrier solar cells prepared by multistep irradiation of a Cu2O substrate by H+ ions. Sol. Cell. 13, (3), 253 (1985).

    Article  Google Scholar 

  8. H. Oguchi, H. Kanai, K. Utani, Y. Matsumura and S. Imamura, Cu2O as active species in the steam reforming of methanol by CuO/ZrO2 catalysts. Appl. Catal. A Gen. 293, (28), 64 (2005).

    Article  Google Scholar 

  9. A. S. Khanna, Introduction to high temperature oxidation and corrosion (ASM International, Ohio, USA, 2002) Ch. 4, pp. 61–71.

  10. C. Wagner, Beitrag zur theorie des anlaufvogangs. Z. Phys. Chem. Abt. B. 21, 25 (1933). (in German).

    Google Scholar 

  11. N. Cabrera and N. F. Mott, Theory of metal oxidation. Rep. Prog. Phys. 12, (1), 163 (1949).

    Article  Google Scholar 

  12. K. Hauffe and B. I. Ilschner, Über den Mechanismus der Oxydation von Nickel bei niedrigen temperaturen. Z. Elektrochem. 58, 382 (1954). (in German).

    Google Scholar 

  13. P. T. Landsberg, On the logarithmic rate law in chemisorption and oxidation. J. Chem. Phys. 23, (6), 1079 (1955).

    Article  Google Scholar 

  14. H. H. Uhlig, Initial oxidation rate of metals and the logarithmic equation. Acta Metall. 4, (5), 541 (1956).

    Article  Google Scholar 

  15. T. N. Rhodin Jr, Low temperature oxidation of copper. I. Physical mechanism. J. Am. Chem. Soc. 72, (11), 5102 (1950).

    Article  Google Scholar 

  16. F. W. Young Jr, J. V. Cathcart and A. T. Gwathmey, The rates of oxidation of several faces of a single crystal of copper as determined with elliptically polarized light. Acta Metall. 4, (2), 145 (1956).

    Article  Google Scholar 

  17. M. Raugh and P. Wibmann, The oxidation kinetics of thin copper films studied by ellipsometry. Thin Solid Films 228, (1–2), 121 (1993).

    Google Scholar 

  18. M. O’Reilly, X. Jiang, J. T. Beechinor, S. Lynch, C. NiDheasuna, J. C. Patterson and G. M. Crean, Investigation of the oxidation behaviour of thin film and bulk copper. Appl. Surf. Sci. 91, (1–4), 152 (1995).

    Article  Google Scholar 

  19. H. Derin and K. Kantarli, Optical characterization of thin thermal oxide films on copper by ellipsometry. Appl. Phys. A 75, 391–395 (2002).

    Article  Google Scholar 

  20. P. K. Krishnamoorthy and S. C. Sircar, Oxidation kinetics of copper in the thin film range*. Acta Meter. 17, 1009–1012 (1969).

    Article  Google Scholar 

  21. J. Iijima, Doctoral Thesis, Tohoku University, 2005.

  22. E. P. Fehlner and N. F. Mott, Low-temperature oxidation. Oxid. Met. 2, (1), 59 (1970).

    Article  Google Scholar 

  23. D. D. Eley and P. R. Wilkinson, Adsorption and oxide formation on aluminium films. Proc. R. Soc. Lond. A. 254, (1278), 327 (1960).

    Article  Google Scholar 

  24. A. T. Fromhold Jr, Space-charge modification of the ionic currents for oxide growth. Solid State Ion. 75, 229 (1995).

    Article  Google Scholar 

  25. M. G. Hapase, M. K. Gharpurey and A. B. Biswas, The oxidation of vacuum deposited films of copper. Surf. Sci. 9, (1), 87 (1968).

    Article  Google Scholar 

  26. L. Bouzidi and A. J. Slavin, Ultrathin films of lead oxide on gold: Dependence of stoichiometry, stability, thickness on O2 pressure and annealing temperature. Surf. Sci. 580, (1–3), 195 (2005).

    Article  Google Scholar 

  27. K. Fujita, D. Ando, M. Uchikoshi, K. Mimura and M. Isshiki, New model for low-temperature oxidation of copper single crystal. Appl. Surf. Sci. 276, (1), 347 (2013).

    Article  Google Scholar 

  28. Y. Zhu, K. Mimura and M. Isshiki, Oxidation mechanism of copper at 623–1073 K. Mater. Trans. 43, (9), 2173 (2002).

    Article  Google Scholar 

  29. M. Heim, H. Arwin, J. Chen and R. Pompe, Determination of oxide thickness on an Si2N2O–ZrO2 composite by spectroscopic ellipsometry. J. Eur. Ceram. Soc. 15, (4), 313 (1995).

    Article  Google Scholar 

  30. M. M. Ayad and M. A. Shenashin, Film thickness studies for the chemically synthesized conducting polyaniline. Eur. Polym. J. 39, 1319 (2003).

    Article  Google Scholar 

  31. M. Rauh, P. Wibmann and M. Wolfel, Ellipsometric studies on the oxidation of thin copper films. Thin Solid Films 233, (1–2), 1993 (289).

    Article  Google Scholar 

  32. R. A. Laudise, Growth of Single Crystals, (Prentice-Hall, Englewood Cliffs, 1970), pp. 174–196.

    Google Scholar 

  33. H. Uhlig, J. Pickett and J. MacNairn, Initial oxidation rate of nickel and effect of the Curie temperature. Acta Metall. 7, (2), 111 (1959).

    Article  Google Scholar 

  34. H. H. Uhlig, Structure and growth of thin films on metals exposed to oxygen. Corros. Sci. 7, (6), 325 (1967).

    Article  Google Scholar 

  35. T. N. Rhodin Jr, Low temperature oxidation of copper. II. Reaction rate anisoptropy. J. Am. Chem. Soc. 73, (7), 3143 (1951).

    Article  Google Scholar 

  36. S. K. Roy and S. C. Sircar, A critical appraisal of the logarithmic rate law in thin-film formation during oxidation of copper and its alloys. Oxid. Met. 15, 9–20 (1981).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kensuke Fujita Kusano.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kusano, K.F., Uchikoshi, M., Mimura, K. et al. Low-Temperature Oxidation of Cu(100), Cu(110) and Cu(111). Oxid Met 82, 181–193 (2014). https://doi.org/10.1007/s11085-014-9486-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-014-9486-3

Keywords

Navigation