Skip to main content
Log in

Oxidation Behavior of Tribaloy T-800 Alloy at 800 and 1,000 °C

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

The oxidation behavior of Co-based Tribaloy T-800 alloy has been studied isothermally in air at 800 and 1,000 °C, respectively. The results showed that the oxidation mechanism was dependent on the exposure temperature. The oxidation of the alloy followed subparabolic oxidation kinetics at 800 °C. The oxide scale at this temperature exhibited a multi-layered structure including an outer layer of Co oxide, a layer composed of complex oxide and spinel, a nonuniform Mo-rich oxide layer, an intermediate mixed oxides layer and an internal attacked layer with different protrusions into Laves phase. During 1,000 °C exposure, it followed linear kinetics. The oxidation rendered a relatively uniform external Cr-rich oxide layer coupled with a thin layer of spinel on the top surface and voids at local scale/alloy interface and intergranular region together with internal Si oxide at 1,000 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. Tribaloy is a registered trademark of Deloro Stellite (USA).

References

  1. T. Sahraoui, H. I. Feraoun, N. Fenineche, G. Montavon, H. Aourag, and C. Coddet, Materials Letters 58(19), 2433 (2004).

    Article  CAS  Google Scholar 

  2. T. Sahraoui, N. E. Fenineche, G. Montavon, and C. Coddet, Journal of Materials Processing Technology 152(1), 43 (2004).

    Article  CAS  Google Scholar 

  3. M. J. Tobar, J. M. Amado, C. Alvarez, A. Garcia, A. Varela, and A. Yanez, Surface and Coatings Technology 202(11), 2297 (2008).

    Article  CAS  Google Scholar 

  4. A. Halstead and R. D. Rawlings, Journal of Materials Science 20, 1693 (1985).

    Article  CAS  Google Scholar 

  5. A. Halstead and R. D. Rawlings, Metal Science 18, 491 (1984).

    CAS  Google Scholar 

  6. C. Navas, M. Cadenas, J. M. Cuetos, L. Vega, and J. De Damborenea, Boletin De La Sociedad Espanola De Ceramica Yvidrio 43, 319 (2004).

    CAS  Google Scholar 

  7. C. Navas, M. Cadenas, J. M. Cuetos, and J. de Damborenea, Wear 260(7–8), 838 (2006).

    Article  CAS  Google Scholar 

  8. W. C. Lin and C. Chen, Surface and Coatings Technology 200(16–17), 4557 (2006).

    Article  CAS  Google Scholar 

  9. E. N. Dah, S. Tsipas, M. P. Hierro, and F. J. Perez, Corrosion Science 49(10), 3850 (2007).

    Article  Google Scholar 

  10. F. A. Khalid, N. Hussain, and K. A. Shahid, Materials Science and Engineering A 265(1–2), 87 (1999).

    Article  Google Scholar 

  11. A. Tomasi, R. Ceccato, M. Nazmy, and S. Gialanella, Materials Science and Engineering A 239–240, 877 (1997).

    Article  Google Scholar 

  12. T. Amano, H. Isobe, N. Sakai, and T. Shishido, Journal of Alloys and Compounds 344(1–2), 394 (2002).

    Article  CAS  Google Scholar 

  13. S. Paswan, R. Mitra, and S. K. Roy, Intermetallics 15(9), 1217 (2007).

    Article  CAS  Google Scholar 

  14. Y. Niu, X. J. Zhang, Y. Wu, and F. Gesmundo, Corrosion Science 48(12), 4020 (2006).

    Article  CAS  Google Scholar 

  15. L. Geng, Y. S. Na, and N. K. Park, Materials and Design 28(3), 978 (2007).

    Article  CAS  Google Scholar 

  16. G. Y. Fu, Y. Niu, and F. Gesmundo, Corrosion Science 45(3), 559 (2003).

    Article  CAS  Google Scholar 

  17. Z. Q. Cao, Y. Shen, C. J. Wang, and W. H. Liu, Corrosion Science 49(6), 2450 (2007).

    Article  CAS  Google Scholar 

  18. N. Birks, G. H. Meier, and F. S. Pettit, Introduction to the High-Temperature Oxidation of Metals, 2nd edn. (Cambridge University Press, Cambridge, 2006), p. 111.

    Google Scholar 

  19. F. I. Wei and F. H. Stott, Reactivity of Solids 6(2–3), 129 (1988).

    Article  CAS  Google Scholar 

  20. N. Birks, G. H. Meier, and F. S. Pettit, Introduction to the High-Temperature Oxidation of Metals, 2nd edn. (Cambridge University Press, Cambridge, 2006), p. 46.

    Google Scholar 

  21. A. N. Hansson, S. Linderoth, M. Mogensen, and M. A. J. Somers, Journal of Alloys and Compounds 433(1–2), 193 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors gratefully acknowledge the support of Mitsubishi Heavy Industries (MHI) of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z.-G. Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, YD., Yang, ZG., Zhang, C. et al. Oxidation Behavior of Tribaloy T-800 Alloy at 800 and 1,000 °C. Oxid Met 70, 229–239 (2008). https://doi.org/10.1007/s11085-008-9117-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-008-9117-y

Keywords

Navigation