Skip to main content
Log in

Crosscut-Simplicial Lattices

  • Published:
Order Aims and scope Submit manuscript

Abstract

We call a finite lattice crosscut-simplicial if the crosscut complex of every nuclear interval is equal to the boundary of a simplex. Every interval of such a lattice is either contractible or homotopy equivalent to a sphere. Recently, Hersh and Mészáros introduced SB-labelings and proved that if a lattice has an SB-labeling then it is crosscut-simplicial. Some known examples of lattices with a natural SB-labeling include the join-distributive lattices, the weak order of a Coxeter group, and the Tamari lattice. Generalizing these three examples, we prove that every meet-semidistributive lattice is crosscut-simplicial, though we do not know whether all such lattices admit an SB-labeling. While not every crosscut-simplicial lattice is meet-semidistributive, we prove that these properties are equivalent for chamber posets of real hyperplane arrangements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Björner, A., Edelman, P.H., Ziegler, G.M.: Hyperplane arrangements with a lattice of regions. Discrete Comput. Geom. 5(3), 263–288 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  2. Björner, A.: Orderings of Coxeter groups. Combinatorics and Algebra 34, 175–195 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bjorner, A.: Topological methods. Handbook of Combinatorics 2, 1819–1872 (1995)

    MATH  MathSciNet  Google Scholar 

  4. Björner, A., Brenti, F.: Combinatorics of Coxeter Groups, vol. 231. Springer Science+ Business Media (2005)

  5. Björner, A., Las Vergnas, M., Sturmfels, B., White, N., Ziegler, G.M.: Oriented Matroids, vol. 46. Cambridge University Press (1999)

  6. Caspard, N., Le Conte de Poly-Barbut, C., Morvan, M.: Cayley lattices of finite coxeter groups are bounded. Adv. Appl. Math. 33(1), 71–94 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  7. Day, A.: Congruence normality: the characterization of the doubling class of convex sets. Algebra Universalis 31(3), 397–406 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  8. Edelman, P.H.: Meet-distributive lattices and the anti-exchange closure. Algebra Universalis 10(1), 290–299 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  9. Edelman, P.H.: A partial order on the regions of ℝn dissected by hyperplanes. Trans. Am. Math. Soc. 283(2), 617–631 (1984)

    MATH  MathSciNet  Google Scholar 

  10. Edelman, P.H., Walker, J.W.: The homotopy type of hyperplane posets. Proc. Am. Math. Soc. 94(2), 221–225 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  11. Funayama, N., Nakayama, T., et al.: On the distributivity of a lattice of lattice-congruences. Proceedings of the Imperial Academy 18(9), 553–554 (1942)

    Article  MATH  MathSciNet  Google Scholar 

  12. Hersh, P., Meszaros, K.: SB-labelings and posets with each interval homotopy equivalent to a sphere or a ball. arXiv:1407.5311 (2014)

  13. Jambu, M., Paris, L.: Combinatorics of inductively factored arrangements. Eur. J. Comb. 16(3), 267–292 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  14. Le Conte de Poly-Barbut, C.: Sur les treillis de coxeter finis. Mathématiques, informatique et Sciences Humaines 125, 41–57 (1994)

    MATH  MathSciNet  Google Scholar 

  15. Mühle, H.: SB-Labelings, distributivity, and Bruhat order on sortable elements ArXiv e-prints (2014)

  16. Reading, N.: Lattice and order properties of the poset of regions in a hyperplane arrangement. Algebra Universalis 50(2), 179–205 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  17. Reading, N.: Lattice congruences, Fans and Hopf algebras. Journal of Combinatorial Theory, Series A 110(2), 237–273 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  18. Reading, N.: Cambrian lattices. Adv. Math. 205(2), 313–353 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  19. Stanley, R.P.: Enumerative combinatorics. Wadsworth Publ. Co., Belmont, CA, USA (1986)

    Book  MATH  Google Scholar 

  20. Walker, J.W.: Canonical homeomorphisms of posets. Eur. J. Comb. 9(2), 97–107 (1988)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas McConville.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McConville, T. Crosscut-Simplicial Lattices. Order 34, 465–477 (2017). https://doi.org/10.1007/s11083-016-9409-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11083-016-9409-9

Keywords

Navigation