Skip to main content
Log in

Utilizing the plasmonic resonance to enhance three wave mixing effects in nano-scale cut-wire

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In this paper, quantitative study of the enhanced three wave mixing effects from periodic array of nano-scale golden cut-wires embedded in nonlinear dielectric is performed. Geometrical parameters of the considered structure are chosen so that the plasmonic resonance occurs in the wavelength 1.5 μm. Plasmonic resonance of this structure gives rise to the localization factor significantly larger than that of the cut-wire structures with no plasmonic resonance. Considering the surrounding medium of the cut-wire a typical second-order nonlinear optical medium, enhancement of the nonlinearity of this nonlinear medium is illustrated. Since the mentioned structure can be considered a homogeneous nonlinear medium with the effective nonlinear susceptibility, nonlinear retrieval method is used to determine the effective nonlinear susceptibility for all four frequency combinations. Maximum enhancement of the effective susceptibility is obtained for the second harmonic generation of the applied wave with the frequency corresponding to the plasmonic resonance, with the enhancement up to two orders of magnitude. Efficiency of the second harmonic generation in this resonant structure surrounded with nonlinear dielectric is calculated to be 30 times more than that of the nonlinear dielectric with the same dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bar-Lev, D., Scheuer, J.: Efficient second harmonic generation using nonlinear substrates patterned by nano-antenna arrays. Opt. Express 21(24), 29165–29178 (2013)

    Article  ADS  Google Scholar 

  • Bouhelier, A., Beversluis, M., Hartschuh, A., Novotny, L.: Near-field second-harmonic generation induced by local field enhancement. Phys. Rev. Lett. 90(1), 013903 (2003)

    Article  ADS  Google Scholar 

  • Boyd, R.W.: Nonlinear Optics. Academic press, New York (2003)

    Google Scholar 

  • Canfield, B.K., Husu, H., Laukkanen, J., Bai, B., Kuittinen, M., Turunen, J., Kauranen, M.: Local field asymmetry drives second-harmonic generation in noncentrosymmetric nanodimers. Nano Lett. 7(5), 1251–1255 (2007)

    Article  ADS  Google Scholar 

  • Dadap, J., Shan, J., Eisenthal, K., Heinz, T.: Second-harmonic Rayleigh scattering from a sphere of centrosymmetric material. Phys. Rev. Lett. 83(20), 4045–4048 (1999)

    Article  ADS  Google Scholar 

  • Fan, W., Zhang, S., Malloy, K., Brueck, S., Panoiu, N., Osgood, R.: Second harmonic generation from patterned GaAs inside a subwavelength metallic hole array. Opt. Express 14(21), 9570–9575 (2006)

    Article  ADS  Google Scholar 

  • Fietz, C., Soukoulis, C.M.: Finite element simulation of microphotonic lasing system. Opt. Express 20(10), 11548–11560 (2012)

    Article  ADS  Google Scholar 

  • Günter, P.: Nonlinear Optical Effects and Materials. Springer, Berlin (2000)

    Book  Google Scholar 

  • Guo, J., Xiang, Y., Dai, X., Wen, S.: Enhanced nonlinearities in double-fishnet negative-index photonic metamaterials. Prog. Electromagn. Res. 136, 269–282 (2013)

    Article  Google Scholar 

  • Kauranen, M., Zayats, A.V.: Nonlinear plasmonics. Nat. Photonics 6(11), 737–748 (2012)

    Article  ADS  Google Scholar 

  • Kawata, S.: Plasmonics: future outlook. Jpn. J. Appl. Phys. 52(1R), 010001 (2013)

    Article  ADS  Google Scholar 

  • Krenn, J., Schider, G., Rechberger, W., Lamprecht, B., Leitner, A., Aussenegg, F., Weeber, J.: Design of multipolar plasmon excitations in silver nanoparticles. Appl. Phys. Lett. 77(21), 3379–3381 (2000)

    Article  ADS  Google Scholar 

  • Lapine, M., Shadrivov, I.V., Kivshar, Y.S.: Colloquium: nonlinear metamaterials. Rev. Mod. Phys. 86(3), 1093–1123 (2014)

    Article  ADS  Google Scholar 

  • Larouche, S., Smith, D.R.: A retrieval method for nonlinear metamaterials. Opt. Commun. 283(8), 1621–1627 (2010)

    Article  ADS  Google Scholar 

  • Linden, S., Enkrich, C., Wegener, M., Zhou, J., Koschny, T., Soukoulis, C.M.: Magnetic response of metamaterials at 100 terahertz. Science 306, 1351–1353 (2004)

    Article  ADS  Google Scholar 

  • Linden, S., Niesler, F., Förstner, J., Grynko, Y., Meier, T., Wegener, M.: Collective effects in second-harmonic generation from split-ring-resonator arrays. Phys. Rev. Lett. 109(1), 015502 (2012)

    Article  ADS  Google Scholar 

  • McPhedran, R.C., Shadrivov, I.V., Kuhlmey, B.T., Kivshar, Y.S.: Metamaterials and metaoptics. NPG Asia Mater. 3(11), 100–108 (2011)

    Article  Google Scholar 

  • Niesler, F., Feth, N., Linden, S., Niegemann, J., Gieseler, J., Busch, K., Wegener, M.: Second-harmonic generation from split-ring resonators on a GaAs substrate. Opt. Lett. 34(13), 1997–1999 (2009)

    Article  ADS  Google Scholar 

  • Pendry, J.B., Holden, A.J., Robbins, D.J., Stewart, W.J.: Magnetism from conductors, and enhanced non-linear phenomena. IEEE Trans. Microw. Theory Tech. 47, 2075–2084 (1999)

  • Puscasu, I., Schaich, W., Boreman, G.D.: Modeling parameters for the spectral behavior of infrared frequency-selective surfaces. Appl. Opt. 40(1), 118–124 (2001)

    Article  ADS  Google Scholar 

  • Rose, A., Larouche, S., Huang, D., Poutrina, E., Smith, D.R.: Nonlinear parameter retrieval from three-and four-wave mixing in metamaterials. Phys. Rev. E 82(3), 036608 (2010)

    Article  ADS  Google Scholar 

  • Rose, A., Larouche, S., Smith, D.R.: Quantitative study of the enhancement of bulk nonlinearities in metamaterials. Phys. Rev. A 84(5), 053805 (2011)

    Article  ADS  Google Scholar 

  • Sabet, R.A., Khoshsima, H., Namdar, A., Ahmadi, V.: Enhanced second order nonlinearity using plasmonic resonance of nano-scale metallic cut-wires. Eur. Phys. J. Appl. Phys. 69(2), 20503 (2015)

    Article  Google Scholar 

  • Schaich, W., Schider, G., Krenn, J., Leitner, A., Aussenegg, F., Puscasu, I., Monacelli, B., Boreman, G.: Optical resonances in periodic surface arrays of metallic patches. Appl. Opt. 42(28), 5714–5721 (2003)

    Article  ADS  Google Scholar 

  • Schider, G., Krenn, J., Hohenau, A., Ditlbacher, H., Leitner, A., Aussenegg, F., Schaich, W.L., Puscasu, I., Monacelli, B., Boreman, G.: Plasmon dispersion relation of Au and Ag nanowires. Phys. Rev. B 68(15), 155427 (2003)

    Article  ADS  Google Scholar 

  • Shalaev, V.M.: Optical negative-index metamaterials. Nat. Photonics 1(1), 41–48 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  • Smith, D., Schultz, S., Markoš, P., Soukoulis, C.: Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients. Phys. Rev. B 65(19), 195104 (2002)

    Article  ADS  Google Scholar 

  • Smith, D., Vier, D., Koschny, T., Soukoulis, C.: Electromagnetic parameter retrieval from inhomogeneous metamaterials. Phys. Rev. E 71(3), 036617 (2005)

    Article  ADS  Google Scholar 

  • Stockman, M.I.: Nanoplasmonics: past, present, and glimpse into future. Opt. Express 19(22), 22029–22106 (2011)

    Article  ADS  Google Scholar 

  • Tuovinen, H., Kauranen, M., Jefimovs, K., Vahimaa, P., Vallius, T., Turunen, J., Tkachenko, N.V., Lemmetyinen, H.: Linear and second-order nonlinear optical properties of arrays of noncentrosymmetric gold nanoparticles. J. Nonlinear Opt. Phys. Mater. 11(04), 421–432 (2002)

    Article  ADS  Google Scholar 

  • Veselago, V., Braginsky, L., Shklover, V., Hafner, C.: Negative refractive index materials. J. Comput. Theor. Nanosci. 3(2), 189–218 (2006)

    Google Scholar 

  • Zheludev, N.I.: The road ahead for metamaterials. Science 328(5978), 582–583 (2010)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. A. Sabet.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sabet, R.A., Khoshsima, H. Utilizing the plasmonic resonance to enhance three wave mixing effects in nano-scale cut-wire. Opt Quant Electron 47, 3337–3347 (2015). https://doi.org/10.1007/s11082-015-0211-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11082-015-0211-5

Keywords

Navigation