Skip to main content
Log in

Optical properties of chiral graphene nanoribbons: a first principle study

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Recent successes in unzipping carbon nanotubes have introduced a new member of graphene nanoribbons (GNRs) family known as chiral GNRs. In this paper, optical properties of chiral GNRs both in longitudinal and transverse polarizations of incident beam have been studied using Density Functional Theory. We have shown that the selection rules, which were previously reported for armchair and zigzag GNRs, are no longer valid due to breaking symmetries in this new family. However, we have demonstrated that the edge states play a critical role in the dielectric constant. It has been shown that, depending on the polarization of incident beam the absorption peaks are different, although they are spread in the same energy range. We also suggested that the absorption energy range is sensitive to the chiral vectors and the light polarization. Due to breaking symmetries in chiral GNRs, absorption peaks are changed becoming approximately 1000 nm, thus a new potential of GNRs for optoelectronic devices is introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Areshkin, D.A., Gunlycke, D., White, C.T.: Ballistic transport in graphene nanostrips in the presence of disorder: importance of edge effects. Nano Lett. 7, 204–210 (2007)

    Article  ADS  Google Scholar 

  • Berahman, M., Sheikhi, M.H.: Optical excitations of finite length graphene nanoribbons. J. Comput. Theor. Nanosci. 8, 90–96 (2011)

    Article  Google Scholar 

  • Gundra, K., Shukla, A.: Theory of the electro-optical properties of graphene nanoribbons. Phys. Rev. B 83, 075413–075419 (2011)

  • Han, M.Y., Özyilmaz, B., Zhang, Y., Kim, P.: Energy band-gap engineering of graphene nanoribbons. Phys. Rev. Lett. 98, 206805–206814 (2007)

  • Hsu, H., Reichl, L.E.: Selection rule for the optical absorption of graphene nanoribbons. Phys. Rev. B 76, 045418–045423 (2007)

  • Jiao, L., Zhang, L., Wang, X., Diankov, G., Dai, H.: Narrow graphene nanoribbons from carbon nanotubes. Nature 458, 877–880 (2009)

    Article  ADS  Google Scholar 

  • Kosynkin, D.V., Higginbotham, A.L., Sinitskii, A., Lomeda, J.R., Dimiev, A., Katherine Price, B., Tour, J.M.: Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 458, 872–876 (2009)

    Article  ADS  Google Scholar 

  • Liao, W., Zhou, G., Xi, F.: Optical properties for armchair-edge graphene nanoribbons. J. Appl. Phys. 104, 126105–126113 (2008)

  • Liao, L., Lin, Y.-C., Bao, M., Cheng, R., Bai, J., Liu, Y., Qu, Y., Wang, K.L., Huang, Y., Duan, X.: High-speed graphene transistors with a self-aligned nanowire gate. Nature 467, 305–308 (2010)

    Article  ADS  Google Scholar 

  • Lin, Y.-M., Jenkins, K.A., Valdes-Garcia, A., Small, J.P., Farmer, D.B., Avouris, P.: Operation of graphene transistors at gigahertz frequencies. Nano Lett. 9, 422–426 (2009)

    Article  ADS  Google Scholar 

  • Ling, C., Setzler, G., Lin, M.-W., Dhindsa, K.S., Jin, J., Yoon, H.J., Kim, S.S., Cheng, M.M.-C., Widjaja, N., Zhou, Z.: Electrical transport properties of graphene nanoribbons produced from sonicating graphite in solution. Nanotechnology 22, 325201–325208 (2011)

  • Liu, G., Stillman, W., Rumyantsev, S., Shao, Q., Shur, M., Balandin, A.A.: Low-frequency electronic noise in the double-gate single-layer graphene transistors. Appl. Phys. Lett. 95, 033103 (2009)

  • Matte, H.S.S.R., Subrahmanyam, K.S., Rao, C.N.R.: Novel magnetic properties of graphene: presence of both ferromagnetic and antiferromagnetic features and other aspects. J. Phys. Chem. C 113, 9982–9985 (2009)

    Article  Google Scholar 

  • Neto, A.H.C., Guinea, F., Peres, N.M.R., Novoselov, K.S., Geim, A.K.: The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009)

  • Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A.: Electric field effect in atomically thin carbon films. Science 306(5696), 666–669 (2004)

  • Ogawa, T., Kanemitsu, Y.: Optical Properties of Low-dimensional Materials. World science (1996)

  • Peyghambarian, N., Koch, S.W., Mysyrowicz, A.: Introduction to Semiconductor Optics, p. 56. Prentice Hall, Englewood Cliffs NJ (1993)

    Google Scholar 

  • Prezzi, D., Varsano, D., Ruini, A., Marini, A., Molinari, E.: Optical properties of graphene nanoribbons: the role of many-body effects. Phys. Rev. B 77, 041404–041408 (2008)

  • Puddy, R.K., Scard, P.H., Tyndall, D., Connolly, M.R., Smith, C.G., Jones, G.A.C., Lombardo, A., Ferrari, A.C., Buitelaar, M.R.: Atomic force microscope nanolithography of graphene: Cuts, pseudocuts, and tip current measurements. Appl. Phys. Lett. 98, 133120 (2011)

  • Rigo, V.A., Martins, T.B., da Silva, A.J.R., Fazzio, A., Miwa, R.H.: Electronic, structural, and transport properties of Ni-doped graphene nanoribbons. Phys. Rev. B 79, 075435–075444 (2009)

  • Sarma, S.D., Adam, S., Hwang, E.H., Rossi, E.: Electronic transport in two-dimensional graphene. Rev. Mod. Phys. 83, 407–470 (2011)

  • Sasaki, K.-I., Kato, K., Tokura, Y., Oguri, K., Sogawa, T.: Theory of optical transitions in graphene nanoribbons. Phys. Rev. B 84, 085458–085469 (2011)

  • Schwierz, F.: Graphene transistors. Nat. Nanotechnol. 5, 487–496 (2010)

  • Soler, J.M., Artacho, E., Gale, J.D., García, A., Junquera, J., Ordejón, P., Sánchez-Portal, D.: The SIESTA method for ab initio order-N materials simulation. J. Phys. Condens. Matter 14, 2745–2780 (2002)

  • Sordan, R., Traversi, F., Russo, V.: Logic gates with a single graphene transistor. Appl. Phys. Lett. 94, 1–3 (2009)

  • Sun, L., Wei, P., Wei, J., Sanvito, S., Hou, S.: From zigzag to armchair: the energetic stability, electronic and magnetic properties of chiral graphene nanoribbons with hydrogen-terminated edges. J. Phys. Condens. Matter 23, 425301–425308 (2011)

  • Talyzin, A.V., Luzan IV, S., Anoshkin, A.G.Nasibulin, Jiang, H., Kauppinen, E.I., Mikoushkin, V.M., Shnitov, V.V., Marchenko, D.E., Noréus, D.: Hydrogenation, purification, and unzipping of carbon nanotubes by reaction with molecular hydrogen: road to graphane nanoribbons. ACS Nano 5, 5132–5140 (2011)

    Article  Google Scholar 

  • Tao, C., Jiao, L., Yazyev, O.V., Chen, Y.-C., Feng, J., Zhang, X., Capaz, R.B., Tour, J.M., Zettl, A., Louie, S.G., Dai, H., Crommie, M.F.: Spatially resolving edge states of chiral graphene nanoribbons. Nat. Phys. 7, 616–620 (2011)

    Article  Google Scholar 

  • Wakabayashi, K., Takane, Y., Yamamoto, M., Sigrist, M.: Electronic transport properties of graphene nanoribbons. New J. Phys. 11, 1–22 (2009a)

  • Wakabayashi, K., Takane, Y., Yamamoto, M., Sigrist, M.: Edge effect on electronic transport properties of graphene nanoribbons and presence of perfectly conducting channel. Carbon 47, 124–137 (2009b)

  • Wiser, N.: Dielectric constant with local field effects included. Phys. Rev 129, 62–69 (1963)

  • Wu, J.-Y., Chen, L.-H., Li, T.-S., Lin, M.-F.: Optical properties of graphene nanoribbon in a spatially modulated magnetic field. Appl. Phys. Lett. 97, 031114 (2010)

    Article  ADS  Google Scholar 

  • Xie, L., Wang, H., Jin, C., Wang, X., Jiao, L., Suenaga, K., Dai, H.: Graphene nanoribbons from unzipped carbon nanotubes: atomic structures, Raman spectroscopy, and electrical properties. J. Am. Chem. Soc. 133, 10394–10397 (2011)

    Article  Google Scholar 

  • Yang, L., Cohen, M.L., Louie, S.G.: Excitonic effects in the optical spectra of graphene nanoribbons. Nano Lett. 7, 3112–3115 (2007)

    Article  ADS  Google Scholar 

  • Yazyev, O.V., Capaz, R.B., Louie, S.G.: Theory of magnetic edge states in chiral graphene nanoribbons. Phys. Rev. B 84, 115406–115411 (2011)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Berahman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berahman, M., Asad, M., Sanaee, M. et al. Optical properties of chiral graphene nanoribbons: a first principle study. Opt Quant Electron 47, 3289–3300 (2015). https://doi.org/10.1007/s11082-015-0207-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11082-015-0207-1

Keywords

Navigation