Skip to main content
Log in

Full geometric simulation of miniaturized GaN double-heterojunction high electron mobility transistors by a multiscale approach coupling quantum and semi-classical transport

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In this paper, a multiscale approach coupling semi-classical drift-diffusion (DD) and the quantum mechanical non-equilibrium Green’s function (NEGF) formalism is established to simulate the full geometry of miniaturized GaN high electron mobility transistors (HEMTs). DD current flow is corrected locally in the HEMT channel, where electron transport represented by the NEGF is governed by quantum effects. As a result, simulated drain current–drain voltage and drain current–gate voltage curves are easily fitted to experimental data without fitting mobility. The variation of electric behavior predicted by our multiscale approach is in agreement with that expected from 2D electrostatics. This work indicates that it is practical and efficient to include NEGF in a DD solver, which is still the workhorse of the technology computer-aided design industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Crosslight Software Inc., Burnaby, Canada. (http://www.crosslight.com)

  • Datta, S.: Electronic Transport in Mesoscopic Systems. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  • der Auf Maur, M., Povolotskyi, M., Sacconi, F., Pecchia, A., Di Carlo, A.: Multiscale simulation of MOS systems based on high-κ oxides. J. Comput. Electron. 7, 398–402 (2008)

    Article  Google Scholar 

  • der Auf Maur, M., Sacconi, F., Penazzi, G., Povolotskyi, M., Romano, G., Pecchia, A., Di Carlo, A.: Coupling atomistic and finite element approaches for the simulation of optoelectronic devices. Opt. Quantum Electron. 41, 671–679 (2009)

    Article  Google Scholar 

  • der Auf Maur, M., Pecchia, A., Penazzi, G., Sacconi, F., Di Carlo, A.: Coupling atomistic and continuous media models for electronic device simulation. J. Comput. Electron. 12, 553–562 (2013)

    Article  Google Scholar 

  • Fischetti, M.V., O’Reagan, T.P., Narayanan, S., Sachs, C., Jin, S., Kim, J., Zhang, Y.: Theoretical study of some physical aspects of electronic transport in nMOSFETs at the 10-nm gate-length. IEEE Trans. Elect. Dev. 54, 2116–2136 (2007)

    Article  ADS  Google Scholar 

  • Fu, Y., Li, Z., Ng, W.T., Sin, J.K.: Integrated Power Devices and TCAD Simulation. CRC Press, Boca Raton (2014)

    Google Scholar 

  • Guo, N., Hu, W.D., Chen, X.S., Wang, L., Lu, W.: Enhanced plasmonic resonant excitation in a grating gated field-effect transistor with supplemental gates. Opt. Express 21, 1606–1614 (2013)

    Article  ADS  Google Scholar 

  • Hu, W.D., Chen, X.S., Yin, F., Zhang, J.B., Lu, W.: Two-dimensional transient simulations of drain lag and current collapse in GaN-based high-electron-mobility transistors. J. Appl. Phys. 105, 084502 (2009)

    Article  ADS  Google Scholar 

  • Klimeck, G.: Quantum and semi-classical transport in NEMO 1-D. J. Comput. Electron. 2, 177–182 (2003)

    Article  Google Scholar 

  • Lei, Y., Liu, Z., He, M., Li, Z., Kang, J., Yi, X., Wang, J., Li, J.: Performance enhancement of blue light-emitting diodes by adjusting the p-type doped last barrier. Appl. Phys. A 115, 1115–1119 (2014)

    Article  ADS  Google Scholar 

  • Li, Z.Q., Li, Z.M.: Comprehensive anaylsis of GaSb-based mid-infrared vertical-cavity surface-emitting lasers. Proceedings of society of photo-optical instrumentation engineers (SPIE), pp. 863907–863916 (2013)

  • Liu, C., Wang, C., Chen, X.Y., Yang, Y.: Enhanced plasmonic resonant excitation in a grating gated field-effect transistor with supplemental gates. Opt. Quantum Electron. (2015). doi:10.1007/s11082-015-0128-z

    Google Scholar 

  • Lu, W., Kumar, V., Schwindt, R., Piner, E., Adesida, I.: DC, RF, and microwave noise performances of AlGaN/GaN HEMTs on sapphire substrates. IEEE Trans. Microw. Theory 50, 2499–2504 (2002)

    Article  Google Scholar 

  • Neophytou, N., Kosina, H., Rakshit, T.: Quantum Transport Simulations of InGaAs HEMTs: Influence of Mass Variations on the Device Performance. IEEE proceedings of the 13th international workshop on computational electronics (IWCE), pp.1–3 (2009)

  • Peng, J., Chen, Q., Wong, N., Meng, L.Y., Yam, C.Y., Chen, G.H.: A multi-scale framework for nano-electronic devices modeling with application to the junctionless transistor. IEEE international conference of electron devices and solid-state circuits (EDSSC), pp. 1–2 (2013)

  • Ren, Z.B., Venugopal, R., Goasguen, S., Datta, S., Lundstrom, M.S.: A two-dimensional simulator for quantum transport in double-gate MOSFETs. IEEE Trans. Electron. Dev. 50, 1914–1925 (2003)

    Article  ADS  Google Scholar 

  • Shinohara, K., Regan, D., Corrion, A., Brown, D., Burnham, S., Willadsen, P.J., Alvarado-Rodriguez, I., Cunningham, M., Butler, C., Schmitz, A., Kim, S., Holden, B., Chang, D., Lee, V., Ohoka, A., Asbeck, P.M., Micovic, M.: Deeply-scaled self-aligned-gate GaN DH-HEMTs with ultrahigh cutoff frequency. IEEE Electron Devices Meeting (IEDM), pp. 453–456 (2011)

  • Tang, H., Webb, J.B., Bardwell, J.A., Raymond, S., Salzman, J., Uzan-Saguy, C.: Properties of carbon-doped GaN. Appl. Phys. Lett. 78, 757–759 (2001)

    Article  ADS  Google Scholar 

  • Wang, X.D., Hu, W.D., Chen, X.S., Lu, W.: The study of self-heating and hot-electron effects for AlGaN/GaN double-channel high-electron-mobility-transistors. IEEE Trans. Electron. Dev. 59, 1393–1401 (2012)

    Article  ADS  Google Scholar 

  • Xia, C.S., Hu, W.D., Wang, C., Li, Z.F., Chen, X.S., Lu, W., Li, Z.M., Li, Z.Q.: Simulation of InGaN/GaN multiple quantum well light-emitting diodes with quantum dot model for electrical and optical effects. Opt. Quantum Electron. 38, 1077–1089 (2006)

    Article  Google Scholar 

  • Xia, C.S., Li, Z.S., Sheng, Y.: On the importance of AlGaN electron blocking layer design for GaN-based light-emitting diodes. Appl. Phys. Lett. 103, 233505 (2013a)

    Article  ADS  Google Scholar 

  • Xia, C.S., Li, Z.S., Sheng, Y., Cheng, L.W., Hu, W.D., Lu, W.: Simulation of InGaN/GaN light-emitting diodes with a non-local quantum well transport model. Opt. Quantum Electron. 45, 597–604 (2013b)

    Article  Google Scholar 

  • Xie, G., Xu, E., Lee, J., Hashemi, N., Ng, W.T., Zhang, B., Fu, F.Y.: Breakdown voltage enhancement for power AlGaN/GaN HEMTs with air-bridge field plate. 24th international symposium on power semiconductor devices and ICs (ISPSD), pp. 337–340 (2012)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Sheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheng, Y., Xia, C.S., Simon Li, Z.M. et al. Full geometric simulation of miniaturized GaN double-heterojunction high electron mobility transistors by a multiscale approach coupling quantum and semi-classical transport. Opt Quant Electron 47, 2659–2666 (2015). https://doi.org/10.1007/s11082-015-0148-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11082-015-0148-8

Keywords

Navigation