Skip to main content
Log in

Broadband absorption enhancement in periodic structure plasmonic solar cell

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In this paper, a novel design of plasmonic solar cell is investigated and analysed using 3D finite difference time domain method. The suggested design has a cylindrical metallic nanoparticles with hydrogenated amorphous silicon (a-Si:H) as an active material. The aim of our work is to get maximum absorption of thin film solar cell by scattering the light from metal nanoparticles. Therefore, the effects of the structure geometrical parameters on the absorption are investigated. The numerical results show that 35 % absorption improvement is achieved over the conventional thin film solar cell without metallic nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Akimov, Y.A., Koh, W.S., Ostricov, K.: TCO and light trapping in silicon thin film solar cells. Solar Energy 77, 917–930 (2004)

    Article  Google Scholar 

  • Akimov, YuA, Ostrikov, K., Li, E.P.: Surface plasmon enhancement of optical absorption in thin-film silicon solar cells. Plasmonics 4, 107–113 (2009)

    Article  Google Scholar 

  • Catchpole, K.R., Pillai, S.: Absorption enhancement due to scattering by dipoles into silicon waveguides. Appl. Phys. 100, 044504 (2006)

    Article  Google Scholar 

  • Catchpole, K.P., Polman, A.: Design principles for particle plasmon enhanced solar cells. Appl. Phys. Lett. 93, 191113 (2008)

    Article  ADS  Google Scholar 

  • Ewe, W.B., Chu, H.S., Li, E.P.: Volume integral equation analysis of surface plasmon resonance of nanoparticles. Opt. Soc. Am. 15, 18200–18208 (2007)

    Google Scholar 

  • Green, M.A.: Solar Cells: Operating Principles, Technology and System Applications, the University of New South Wales, Sydney, (1998) http://www.lumerical.com

  • Hägglund, Zäch, C.M., Kasemo, B.: Enhanced charge carrier generation in dye sensitized solar cells by nanoparticle plasmons. Appl. Phys. Lett. 92, 013113 (2008)

    Article  ADS  Google Scholar 

  • Hussein, M., Hameed, F.M., Areed, F.F.N., Obayya, S.S.A.: Analysis of a novel decagonal semiconductor nanowire for solar cell applications. SPIE 9140, 1–6 (2014)

    Google Scholar 

  • Kottmann, J.P., Martin, O.J.F., Smith, D.R., Schultz, S.: Spectral response of plasmon resonant nanoparticles with a non-regular shape. Opt. Soc. Am. 6, 213–219 (2000)

    Google Scholar 

  • Luk’yanchuk, B.S., Tribelsky, M.I., Wang, Z.B., Zhou, Y., Hong, M.H., Shi, L.P., Chong, T.C.: Extraordinary scattering diagram for nanoparticles near plasmon resonance frequencies. Appl. Phys. A 89, 259–264 (2007)

    Article  ADS  Google Scholar 

  • Müller, J., Rech, B., Springer, J., Vanecek, M.: Enhancement of optical absorption in thin-film solar cells through the excitation of higher-order nanoparticle plasmon modes. Opt. Express 17, 10195–10205 (2009)

    Article  Google Scholar 

  • Obayya, S.S.A.: Computational Photonics. Wiley (2011)

  • Pillai, S., Catchpole, K.R., Trupke, T., Green, M.A.: Surface plasmon enhanced silicon solar cells. J. Appl. Phys. 101, 093105 (2007)

    Article  ADS  Google Scholar 

  • Pinto, D., Obayya, S.S.A.: Improved complex-envelope alternating-direction-implicit finite-difference-time-domain method for photonic-bandgap cavities. IEEE J. Lightwave Technol. 25(1), 440–447 (2007)

  • Stuart, H.R., Hall, D.G.: Island size effects in nanoparticle-enhanced photodetectors. Appl. Phys. 73, 3815–3817 (1998)

    ADS  Google Scholar 

  • Soller, B.J., Hall, D.G.: Scattering enhancement from an array of interacting dipoles near a planar waveguide. J. Opt. Am. Soc. B 19, 2437–2448 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  • Tong, S.W., Zhang, C.F., Jiang, C.Y., Ling, G., Liu, Q.D., Kang, E.T., Chan, D.S.H., Zhu, C.: Improvement in the hole collection of polymer solar cells by utilizing gold nanoparticle buffer layer. Chem. Phys. Lett. 453, 73–76 (2008)

    Article  ADS  Google Scholar 

  • Westphalen, M., Kreibig, U., Rostalski, J., Lüth, H., Meissner, D.: Metal cluster enhanced organic solar cells. Solar Energy Mater. Solar Cells 61, 97–105 (2000)

    Article  Google Scholar 

  • Wu, S., Wang, W., Reinhardt, K., Lu, Y., Chen, S.: Absorption enhancement in thin film silicon solar cells by two dimensional periodic nanopatterns. J. Nanophotonics 4, 1–6 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. S. A. Obayya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muhammad, M.H., Hameed, M.F.O. & Obayya, S.S.A. Broadband absorption enhancement in periodic structure plasmonic solar cell. Opt Quant Electron 47, 1487–1494 (2015). https://doi.org/10.1007/s11082-015-0127-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11082-015-0127-0

Keywords

Navigation