Skip to main content
Log in

Design and evaluation of a reflectance diffuse optical tomography system

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

We have designed a continuous wave, back-reflection diffuse optical tomography system; and developed a new practical calibration method including both optode efficiency and positional error corrections. System design, data acquisition and calibration protocols are described in detail. Monte Carlo (MC) simulations of photon distribution for tissue phantoms have been used to obtain the weight matrix to be used in the Rytov approximation to the photon diffusion equation. The system has been evaluated by acquiring data from a tissue phantom with a background scattering coefficient (\(\upmu _{\mathrm{s}}^{\prime }\)) of \(10\,\hbox {cm}^{-1}\) and absorption coefficient (\(\upmu _{\mathrm{a}})\) of \(0.04\,\hbox {cm}^{-1}\). An inclusion made of 1 % Intralipid and indocyanine green with \(\upmu _{s}^{\prime }=10\,\hbox {cm}^{-1}\) and \(\upmu _{\mathrm{a}}= 0.16\,\hbox {cm}^{-1}\) was placed at a 2 cm depth from the tissue phantom surface. After calibration, the average value of the measurements over source–detector pairs at the same distance for each neighborhood was calculated. Perturbation data were obtained by subtracting the average data from the measurements with the same source–detector separation. In the reconstruction, weight matrixes obtained from MC simulation for \(\upmu _{\mathrm{s}}^{\prime }= 7\) to \(12\,\hbox {cm}^{-1}\) were used. The Depth Compensation Algorithm was used in the Tikhonov regularization to identify the location of the inclusion correctly in the reconstruction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Arridge, S.R.: Optical tomography in medical imaging. Inverse Probl. 15(2), R41–R93 (1999)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Bluestone, A.Y., Abdoulaeva, G., Schmitz, C.H., Barboura, R.L., Hielscher, A.H.: Three-dimensional optical tomography of hemodynamics in the human head. Opt. Express 9, 272–286 (2001)

    Article  ADS  Google Scholar 

  • Boas, D.A., Dale, A.M.: Simulation study of magnetic resonance imaging-guided cortically constrained diffuse optical tomography of human brain function. Appl. Opt. 44(10), 1957–1968 (2005)

    Article  ADS  Google Scholar 

  • Boas, D.A., Gaudette, T., Arridge, S.R.: Simultaneous imaging and optode calibration with diffuse optical tomography. Opt. Express 8(5), 263–270 (2001)

    Article  ADS  Google Scholar 

  • Boas, D.A., Dale, A.M., Franceschini, M.A.: Diffuse optical imaging of brain activation: approaches to optimizing image sensitivity, resolution, and accuracy. Neuroimage 23, S275–S288 (2004a)

    Article  Google Scholar 

  • Boas, D.A., Chen, K., Grebert, D., Franceschini, M.A.: Improving the diffuse optical imaging spatial resolution of the cerebral hemodynamic response to brain activation in humans. Opt. Lett. 29, 1506–1508 (2004b)

    Article  ADS  Google Scholar 

  • Cheng, X., Boas, D.A.: Diffuse optical reflection tomography with continuous wave illumination. Opt. Exp. 3(3), 118–124 (1998)

    Article  ADS  Google Scholar 

  • Culveri, J.P., Siegel, A.M., Stott, J.J., et al.: Volumetric diffuse optical tomography of brain activity. Opt. Lett. 28, 2061–2063 (2003)

    Article  ADS  Google Scholar 

  • Durduran, T., Choe, R., Baker, W.B., et al.: Diffuse optics for tissue monitoring and tomography. Rep. Prog. Phys. 73, 1–43 (2010)

    Article  Google Scholar 

  • Hoshi, Y., Oda, I., Wada, Y., Ito, Y., Yamashita, Y., Oda, M., Ohta, K., Yamada, Y., Mamoru, T.: Visuospatial imagery is a fruitful strategy for the digit span backward task: a study with near-infrared optical tomography. Cogn. Brain Res. 9, 339–342 (2000)

    Article  Google Scholar 

  • Huang, M.M., Zhu, Q.: Dual-mesh optical tomography reconstruction method with a depth correction that uses a priori ultrasound information. Appl. Opt. 43, 1654–1662 (2004)

    Article  ADS  Google Scholar 

  • Joseph, D.K., Huppert, T.J., Franceschini, M.A., Boas, D.A.: Diffuse optical tomography system to image brain activation with improved spatial resolution and validation with functional magnetic resonance imaging. Appl. Opt. 45, 8142–8151 (2006)

    Article  ADS  Google Scholar 

  • Mastanduno, M.A., Jiang, S., DiFlorio-Alexander, R., Pogue, B.W., Paulsen, K.D.: Automatic and robust calibration of optical detector arrays for biomedical diffuse optical spectroscopy. Biomed. Opt. Exp. 3(10), 2339–2352 (2012)

    Article  Google Scholar 

  • Niu, H.J., Lin, Z.J., Tian, F., Dhamne, S., Liu, H.: Comprehensive investigation of three-dimensional diffuse optical tomography with depth compensation algorithm. J. Biomed. Opt. 15, 046005 (2010a)

    Article  ADS  Google Scholar 

  • Niu, J., Tian, F., Lin, Z.J., Liu, H.: Development of a compensation algorithm for accurate depth localization in diffuse optical tomography. Opt. Lett. 35, 429–431 (2010b)

    Article  ADS  Google Scholar 

  • Patterson, M.S., Chance, B., Wilson, B.C.: Time-resolved reflectance and transmittance for the non-invasive measurement of tissue optical properties. Appl. Opt. 28, 2331–2336 (1989)

    Article  ADS  Google Scholar 

  • Schmitz, C.H., Graber, H.L., Luo, H., Arif, I., Ira, J., Pei, Y., Bluestone, A., Zhong, S., Andronica, R., Soller, I., Ramirez, N., Barbour, S.-L.S., Barbour, R. L.: Instrumentation and calibration protocol for imaging dynamics features in dense-scattering media by optical tomography. Appl. Opt. 39, 6466–6485 (2000)

    Google Scholar 

  • Siegel, A.M., Marota, J.J.A., Boas, D.A.: Design and evaluation of a continuous-wave diffuse optical tomography system. Opt. Express 4, 287–298 (1999)

    Article  ADS  Google Scholar 

  • Tavakoli, B., Zhu, Q.: Depth-correction algorithm that improves optical quantification of large breast lesions imaged by diffuse optical tomography. J. Biomed. Opt. 16, 056002 (2011)

    Article  ADS  Google Scholar 

  • Tian, F.H., Niu, H., Khadka, S., Lin, Z.J., Liu, H.: Algorithmic depth compensation improves quantification and noise suppression in functional diffuse optical tomography. Biomed. Opt. Express 1, 441–452 (2010)

    Article  Google Scholar 

  • Wang, L.-H., Jacques, S.L., Zheng, L.Q.: MCML—Monte Carlo modeling of photon transport in multi-layered tissues. Comput. Methods Program. Biomed. 47, 131–146 (1995)

    Article  Google Scholar 

  • Zhao, Q., Ji, L.J., Jiang, T.Z.: Improving performance of reflectance diffuse optical imaging using a multicentered mode. J. Biomed. Opt. 11, 064019 (2006)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the Akdeniz University Scientific Research Project Council, Project No.: 2009.02.0122.003, and in part by TUBITAK, Project No.: 110E263.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Murat Canpolat.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kazanci, H.Ö., Mercan, T. & Canpolat, M. Design and evaluation of a reflectance diffuse optical tomography system. Opt Quant Electron 47, 257–265 (2015). https://doi.org/10.1007/s11082-014-9910-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11082-014-9910-6

Keywords

Navigation