Skip to main content
Log in

Nanoporous silicon microcavity based optical sensor to detect adulteration of petrol by organic solvents

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Adulteration of petrol by organic solvents is rampant across the globe. Here we present a novel sensor to detect adulteration of petrol by three organic solvents, namely toluene, xylene and benzene. The sensor is a nanoporous silicon microcavity structure that is sensitive to the variations in the refractive index of the fuel samples. The several useful properties of porous silicon such as its simple fabrication process, high sensitivity, compatibility with silicon microelectronics, room temperature operation, very high surface-to-volume ratio and biocompatibility make it a popular candidate for sensing applications. The primary objective of this work is to develop a novel porous silicon microcavity sensor that is capable of detecting the adulteration of petrol by the aforementioned organic solvents. This is achieved by the change in the reflectance spectrum of the microstructure when different concentrations of adulterated fuel samples are introduced in its pores, as a distinct red shift is produced for each concentration. The same sensor is utilized for sensing the adulteration by the three organic solvents. The sensing process was found to be reversible and hence the sensor is reusable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Agostini, C.A.: Differential fuel taxes and their effects on automobile demand. CEPAL Rev. 102, 101–111 (2010)

    Google Scholar 

  • Canham, L.: Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers. Appl. Phys. Lett. 57(10), 1046–1048 (1990)

    Article  ADS  Google Scholar 

  • Giovannozzi, A., Ferrero, V., Pennecchi, F., Sadeghi, S., Gilardi, G., Rossi, A.: P450-based porous silicon biosensor for arachidonic acid detection. Biosens. Bioelectron. 28(1), 320–325 (2011)

    Article  Google Scholar 

  • Granitzer, P., Rumpf, K.: Porous silicon—a versatile host material. Materials 3(2), 943–998 (2010)

    Article  ADS  Google Scholar 

  • Hou, H., Nieto, A., Ma, F., Freeman, W.R., Sailor, M.J., Cheng, L.: Tunable sustained intravitreal drug delivery system for daunorubicin using oxidized porous silicon. J. Controll. Release 178, 46–54 (2014)

  • Hu, J., Ma, H., Zhang, W., Yu, Z., Sheng, G., Fu, J.: Effects of benzene and its metabolites on global DNA methylation in human normal hepatic l02 cells. Environ. Toxicol. 29(1), 108–116 (2014)

    Article  Google Scholar 

  • Jin, Y.-S., Kim, G.-J., Shon, C.-H., Jeon, S.-G., Kim, J.-I.: Analysis of petroleum products and their mixtures by using terahertz time domain spectroscopy. J. Korean Phys. Soc. 53(4), 1879–1885 (2008)

    Google Scholar 

  • Krismastuti, F.S., Pace, S., Voelcker, N.H.: Porous silicon resonant microcavity biosensor for matrix metalloproteinase detection. Adv. Funct. Mater. 24(23), 3639–3650 (2014)

  • Lehto, V.P., Salonen, J., Santos, H., Riikonen, J.: silicon-based materials as a drug delivery system for water-insoluble drugs. Douroumis, D., Fahr. Johh A. (eds.) In drug delivery strategies for poorly water-soluble drugs, pp. 477–508. Wiley & Sons Ltd., Singapore (2013)

  • Ma, S., Hu, M., Zeng, P., Yan, W., Li, M.: Growth of tungsten oxide nanorods onto porous silicon and their sensing properties for \(\text{ NO }_2\). Mater. Lett. 99, 57–60 (2013)

    Article  Google Scholar 

  • Ma, S., Hu, M., Zeng, P., Li, M., Yan, W., Qin, Y.: Synthesis and low-temperature gas sensing properties of tungsten oxide nanowires/porous silicon composite. Sens. Actuators B Chem. 192, 341–349 (2014)

    Article  Google Scholar 

  • Mathew, F.P., Alocilja, E.C.: Porous silicon-based biosensor for pathogen detection. Biosens. Bioelectron. 20(8), 1656–1661 (2005)

    Article  Google Scholar 

  • McMichael, A.J.: Carcinogenicity of benzene, toluene and xylene: epidemiological and experimental evidence. IARC Sci. Publ. 85, 3–18 (1988)

    Google Scholar 

  • Naveas, N., Hernandez-Montelongo, J., Pulido, R., Torres-Costa, V., Villanueva-Guerrero, R., García Ruiz, J.P.: Fabrication and characterization of a chemically oxidized-nanostructured porous silicon based biosensor implementing orienting protein A. Coll. Surf. B Biointerfaces 115, 310–316 (2014)

  • Parivesh: Consequences of Fuel Adulteration. Central Pollution Control Board (CPCB) http://www.cpcbenvis.nic.in/cpcb_newsletter/Transport%20Fuel%20Adul.pdf; http://www.cpcbenvis.nic.in/newsletter_main.html# (2014)

  • Patel, P., Mishra, V., Panchal, A.: Nano porous silicon microcavity optical biosensor device for glucose detection. Dig. J. Nanomater. Biostruct. 7(3), 973–982 (2012a)

    Google Scholar 

  • Patel, P., Mishra, V., Panchal, A.: Theoretical and experimental study of nanoporous silicon photonic microcavity optical sensor devices. Adv. Nat. Sci. Nanosci. Nanotechnol. 3(3), 035016 (2012b)

    Article  ADS  Google Scholar 

  • Pham, H.P., Bui, H., Hoang, L.H., Nguyen, T.V., Nguyen, T.A., Pham, T.S., Ngo, Q.M.: Nano-porous silicon microcavity sensors for determination of organic fuel mixtures. J. Opt. Soc. Korea 17(5), 423–427 (2013)

    Article  Google Scholar 

  • Roy, S.: Fiber optic sensor for determining adulteration of petrol and diesel by kerosene. Sens. Actuators B Chem. 55(2), 212–216 (1999)

    Article  Google Scholar 

  • Ruminski, A.M., Barillaro, G., Chaffin, C., Sailor, M.J.: Internally referenced remote sensors for HF and Cl2 using reactive porous silicon photonic crystals. Adv. Funct. Mater. 21(8), 1511–1525 (2011)

    Article  Google Scholar 

  • Secret, E., Smith, K., Dubljevic, V., Moore, E., Macardle, P., Delalat, B., Rogers, M.L., Johns, T.G., Durand, J.O., Cunin, F.: Antibody-functionalized porous silicon nanoparticles for vectorization of hydrophobic drugs. Adv. Healthc. Mater. 2(5), 718–727 (2013)

    Article  Google Scholar 

  • Sherertz, P.C.: Petroleum Products. Virginia Department of ealth http://www.vdh.virginia.gov/Epidemiology/dee/PublicHealthToxicology/documents/pdf/petrofac.PDF (1988)

  • Shrestha, N., Shahbazi, M.-A., Araújo, F., Zhang, H., Mäkilä, E.M., Kauppila, J., Sarmento, B., Salonen, J.J., Hirvonen, J.T., Santos, H.A.: Chitosan-modified porous silicon microparticles for enhanced permeability of insulin across intestinal cell monolayers. Biomaterials 35(25), 7172–7179 (2014)

  • Tebizi-Tighilt, F.-Z., Zane, F., Belhaneche-Bensemra, N., Belhousse, S., Sam, S., Gabouze, N.-E.: Electrochemical gas sensors based on polypyrrole-porous silicon. Appl. Surf. Sci. 269, 180–183 (2013)

    Article  ADS  Google Scholar 

  • Uhlir, A.: Electrolytic shaping of germanium and silicon. Bell Syst. Tech. J. 35(2), 333–347 (1956)

    Article  Google Scholar 

  • Zhang, H.-Y., Lü, X.-Y., Jia, Z.-H., Li, J.-W., Zhang, F.-C.: Porous silicon biosensor for detection of variable domain of heavy-chain of HCAb antibody. Optoelectron. Lett. 8, 81–83 (2012)

    Article  ADS  Google Scholar 

  • Zhang, H., Jia, Z., Lv, X., Zhou, J., Chen, L., Liu, R., Ma, J.: Porous silicon optical microcavity biosensor on silicon-on-insulator wafer for sensitive DNA detection. Biosens. Bioelectron. 44, 89–94 (2013)

    Article  Google Scholar 

  • Zhang, H., Liu, D., Shahbazi, M.A., Mäkilä, E., Herranz-Blanco, B., Salonen, J., Hirvonen, J., Santos, H.A.: Fabrication of a multifunctional nano-in-micro drug delivery platform by microfluidic templated encapsulation of porous silicon in polymer matrix. Adv. Mater. 26(26), 4497–4503 (2014)

Download references

Acknowledgments

This work was supported by the grant from Defence Research and Development Organization (DRDO), Govt. of India. We are also grateful to Sophisticated Analytical Instrumentation Facility (SAIF), IIT Bombay, for the structural characterization of the samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vivekanand Mishra.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, V., Patel, P.N. & Tiwari, V. Nanoporous silicon microcavity based optical sensor to detect adulteration of petrol by organic solvents. Opt Quant Electron 47, 2299–2310 (2015). https://doi.org/10.1007/s11082-014-0107-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11082-014-0107-9

Keywords

Navigation